
Universidade Técnica de Lisboa

Analysis and Discovery of Service Orchestrations

Carlos Miguel Delgado Libório

Dissertation for the degree of

Master of Science in Information Systems and
Computer Engineering

Committee

Prof. Dr. Alberto Cunha (president)
Prof. Dr. Diogo R. Ferreira (supervisor)

Prof. Dr. Bruno Martins

October 2010

ii

Analysis and Discovery
of

Service Orchestrations

Carlos M. D. Libório

“The key to completely read one organization, is to fully realize its organizational DNA, the
sequence of activities that use, alter or process several resources, physical, informational or

human, i.e. the organization’s business processes”

José Tribolet

iv

To Conceição and Benjamim,

the better parts of the whole...

v

vi

Acknowledgements

First of all I would like to thank Prof. Diogo R. Ferreira for providing me with this opportunity and
for his excellent guidance, support, motivation, and knowledge sharing. I would also like to thank
Gil Aires and Álvaro Rebuge, for their optimistic support and for the many conversations, work
meetings and helpful insights along the course of this work. Their help and collaboration strongly
improved the journey. Furthermore, my thanks go to every author for their work and contribution
with inestimable background knowledge.

To my friends, a special thank you, for helping and providing their own knowledge and expertise,
even when it was not related with this work. To Michel and Ricardo, for their continuous help and
valuable feedback. To Ritocas, Tomé, Cláudia, Pedrocas, Helena, Renato and Moreira for their
everlasting help, support and motivation. To Loquinhas, whose will of heart and dedication firmly
encouraged me to move on.

Lastly, but definitely not least, to my parents and family, a special thank you very much for all
these years of comfort and encouragement that made this work possible.

Carlos M. D. Libório

July 2010

vii

viii

Abstract

Service orchestrations are used by organizations to develop, implement and deploy business pro-
cesses based on the linkage, composition and reutilization of services. These service orchestrations
are modelled using a workflow technology prescribing service behaviour and interactions, and con-
stitute themselves reusable services. Such services are used to implement organizational processes
and can be invoked by other organizations, enabling business networkability, organization interop-
erability, and service globalization.

This work aims at analysing and discovering service orchestrations by means of applying process
mining techniques. This way, it will be possible to analyse the run-time behaviour of service
orchestrations, extract their run-time process models and compare them with the original models
in order to improve or redesign business processes for an effective use of services in an enterprise
environment.

Keywords: Service Orchestrations, Process Mining, Business Process Management, Service
Oriented Architectures, Enterprise Application Integration, Choreographies, Interoperability

ix

x

Resumo

As orquestrações de serviços são utilizadas pelas organizações para implementar, desenvolver e ex-
ecutar processos de negócio, através da composição e reutilização de serviços. Estas orquestrações
de serviços são modeladas através de uma tecnologia de workflow, desenhando o seu comporta-
mento e interacções, constituindo elas próprias serviços reutilizáveis. Os serviços são utilizados
para implementar funcionalidades de uma organização que podem ser utilizadas por outras organi-
zações, permitindo desta forma maior interoperabilidade e integração na rede global. Os processos
de negócio passam a ser transversais não apenas a uma organização, mas incluindo vários nós de
comunicação inter-organizacional.

Este trabalho pretende analisar e descobrir as orquestrações de serviços, através da aplicação
de técnicas de process mining, ou extracção de processos. Desta forma, será possível analisar
o comportamento em tempo de execução das orquestrações de serviços, extrair os modelos de
processo executados e compará-los com os modelos originais, por forma a melhorar o seu desenho e
redefinir os processos de negócio para uma melhor e mais eficaz utilização de serviços num ambiente
empresarial.

Palavras chave: Orquestrações de Serviços, Extracção de Processos, Gestão de Processos
de Negócio, Arquitecturas Orientadas aos Serviços, Integração de Aplicações Empresariais, Core-
ografias, Interoperabilidade

xi

xii

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Related Areas . 2
1.3 Outline . 2

2 Integration Platforms 3
2.1 Enterprise Application Integration . 3
2.2 Enterprise Service Bus . 7
2.3 Service Orchestrations . 8
2.4 Choreographies . 10
2.5 Conclusion . 11

3 Process Mining 13
3.1 Domain . 13
3.2 Mining Techniques . 18
3.3 Mining Web Services . 19
3.4 ProM: a Process Mining Framework . 20
3.5 Conclusion . 21

4 Mining Service Orchestrations 23
4.1 Methodology . 23
4.2 Log Extraction . 24
4.3 Log Inspection . 26
4.4 Log Aggregation . 30

4.4.1 MXML Log File . 31
4.4.2 Process Model . 33

4.5 ProM Analysis . 33
4.6 Model Visualization . 35
4.7 Performance Analysis . 37
4.8 Conformance analysis . 39

4.8.1 Instance Conformance . 41
4.8.2 Model Conformance . 43

4.9 Service Network Architecture . 43
4.10 Conclusion . 44

xiii

5 OrchInsider: a Service Orchestrations’ Mining Application 45
5.1 Versioning . 46
5.2 Communication Ports . 47
5.3 Design Model . 48
5.4 Performance Analysis . 49
5.5 Conformance Analysis . 51
5.6 Conclusion . 54

6 Case Study: SportTicket Online 55
6.1 SportTicket Online’s Orchestrations . 55

6.1.1 Buying Process . 56
6.1.2 Returning Process . 56

6.2 Mining SportTicket Online . 56
6.2.1 Analysis and Discovery . 57
6.2.2 Design Model Visualization . 60
6.2.3 Performance Analysis . 65
6.2.4 Service Network Architecture . 67

6.3 Discussion . 68

7 Conclusion 69
7.1 Contributions . 69
7.2 Future Work . 70

Bibliography 71

xiv

List of Figures

2.1 Business Process Management extends typical Workflow Management Systems . . . 4
2.2 Service Oriented Architecture (SOA) (Ferreira, 2008) 6
2.3 Enterprise Service Bus architecture, connecting several applications and technologies 7
2.4 Service orchestration as a workflow logic with service composition 9
2.5 Service orchestration design in Microsoft Biztalk integration platform 9
2.6 Choreography as a structured interaction between service orchestrations in different

organizations . 10

3.1 The Process Mining domain, adapted from (Aalst et al., 2009) 15
3.2 UML diagram of the MXML format (Günther and van der Aalst, 2006) 16
3.3 ProM framework (Dongen et al., 2005) . 21

4.1 Analysis and discovery of service orchestrations (ADSO), the mining methodology . 23
4.2 Microsoft Biztalk simplified database model with orchestration instance information 26
4.3 Service orchestration’s instance information retrieval in Microsoft Biztalk integration

platform . 28
4.4 Service orchestration’s activity information discovery in Microsoft Biztalk integration

platform . 29
4.5 Service orchestration’s activity information in Microsoft Biztalk integration platform 30
4.6 Log aggregation’s generated MXML log file . 32
4.7 ProM’s control-flow analysis of a service orchestration’s MXML log file 34
4.8 Model dependency graph . 35
4.9 Model visualization phase with orchestration-oriented information 37
4.10 Log replay during instance conformance checking . 42

5.1 Deployed orchestrations and instance information, using OrchInsider 46
5.2 Version differences analysis, using OrchInsider . 47
5.3 Service orchestration’s external communications, using OrchInsider 48
5.4 Design model enhanced with performance analysis, using OrchInsider 49
5.5 Performance analysis with OrchInsider . 50
5.6 Path analysis with OrchInsider . 51
5.7 Analysis and discovery of service orchestrations (ADSO), the full cycle 52
5.8 Conformance analysis with OrchInsider . 53
5.9 Service orchestration’s activity conformance model, using OrchInsider 54

xv

6.1 Process conformance analysis of SportTicket Online’s buying process (a) 58
6.2 Process conformance analysis of SportTicket Online’s buying process (b) 59
6.3 SportTicket Online’s mined buying process enhanced with performance analysis (a) . 61
6.4 SportTicket Online’s mined buying process enhanced with performance analysis (b) 62
6.5 SportTicket Online’s mined buying process enhanced with performance analysis (c) . 63
6.6 SportTicket Online’s buying process’ performance information 65
6.7 Service network architecture of SportTicket Online’s buying process 67
6.8 Service network architecture of SportTicket Online’s returning process 67

xvi

List of Tables

3.1 Service orchestration’s event log . 14

4.1 Service orchestration’s instance information in Microsoft Biztalk integration platform 28
4.2 Pre-processed event log from the log inspection phase 29
4.3 Log aggregation’s dependency frequency table . 33
4.4 Orchestration-oriented activity information . 36
4.5 Service orchestration’s activity performance information 38
4.6 Service orchestration’s start and end activities . 39
4.7 Activity mapping using event type information . 41

6.1 Analysis questions concerning service orchestrations 55
6.2 Version information of SportTicket Online’s buying process 57
6.3 Activity performance indicators of SportTicket Online’s buying process 65
6.4 Non-predicted end activities retrieved from SportTicket Online’s buying process . . . 66

xvii

xviii

Chapter 1

Introduction

Today, information systems are at the core of any organization, allowing, not only better adaptabil-
ity but also interoperability. Globalization reinforces the need of organizations to perform better,
faster, more efficiently, but also, the urge to communicate and develop partnerships (Laudon and
Laudon, 2009; Legner and Wende, 2006). Business processes are no longer a one communica-
tion node only, they have the ability to “travel” through several organizations, becoming cross-
organizational processes.

Service Oriented Architectures allow organizations to implement such business processes in a
flexible way, modelling the behaviour of service orchestrations as workflows (Weijters and van der
Aalst, 2002; Aalst et al., 2003a). These service orchestrations represent or model the implementation
of one or more business processes along the organization’s service and application portfolio. After
deployment and during their execution time, service orchestrations generate vast amounts of run-
time information that can be used to monitor and analyse an organization’s business processes.
Applying mining techniques to execution generated event logs, and developing a methodology to
help at the discovery of service orchestrations, are the main goals of this work.

The problem addressed in this dissertation can be summarized by the following statement:

Problem statement: Service orchestrations are used by organizations to develop and implement
their business processes. Organizations need to seize control over their services and business pro-
cesses. How should one take advantage of the vast amounts of run-time information generated by
integration platforms, so it is possible to analyse the run-time behaviour of service orchestrations?

1.1 Goals

This work introduces a process mining methodology to analyse and discover deployed service or-
chestrations using their run-time generated event logs, with the purpose of studying and unveiling
run-time behaviours and performance issues. A mining methodology for the analysis and discovery
of service orchestrations, referred to as the ADSO1 mining methodology, will be proposed and in-
troduced, along with a software application that implements such methodology, and a case study
built, in which developed techniques are validated using one integration platform, but application
is also possible in other integration scenarios.

1ADSO - “Analysis and Discovery of Service Orchestrations”

1

Analysis and Discovery of Service Orchestrations 1. Introduction

The proposed ADSO mining methodology aims to retrieve process-aware information from event
logs, generated when service orchestrations are deployed and executed, this way enabling organiza-
tions to truly and effectively monitor, manage and control their business processes;

• Understanding executed behaviours and comparing discovered models with previously de-
signed processes;

• Measuring the discovered model’s conformance;

• Analysing process modelling and development along time;

• Measuring performance, and understanding possible improvements;

• Identifying and correctly evaluating existing problems and inefficiencies;

• Inspecting failures and understanding why and when then occurred;

• Realizing the orchestration’s external communications and network architecture.

This work will show that process mining techniques and paradigms can be applied to service or-
chestrations, and valuable results achieved that can help organizations to seize control over their
business processes.

The presented statement and thesis can be outlined as follows:

Thesis: Process mining techniques can be utilized by organizations to analyse and discover the
run-time behaviour of service orchestrations, unveiling process-aware and performance information.

1.2 Related Areas

Adopting process mining techniques to integration platforms outlines the main purpose and course
of this work. Integration platforms enable the construction of integration solutions and Service
Oriented Architectures through the usage of service orchestrations. Process mining aims to discover
underlying processes and process-aware information in event logs. Integration platforms and process
mining are the two major representative areas of this work.

1.3 Outline

First, integration platforms will be presented and some of their major research areas, in Chapter 2.
Service orchestrations are introduced and discussed along with service collaboration issues, service
choreographies. Chapter 3 refers to process mining, its goals and the most relevant techniques
concerning Service Oriented Architectures, and focusing on service orchestrations. ProM, a specific
process mining framework is also presented. The proposed ADSO methodology and solution is
addressed in Chapter 4. Chapter 5 presents a service orchestrations’ mining application that applies
the proposed mining methodology. A case study is performed, where deployed service orchestrations
are used as application examples, so as to validate the proposed solution and test the mining
application, in Chapter 6. Finally, conclusions are drawn in Chapter 7.

2

Chapter 2

Integration Platforms

Presently, organizations need to communicate and develop partnerships, stretching their business
processes across distinct organizations. Process-Aware Information Systems (PAIS) have emerged
in the last years, changing the way information systems were developed, shifting from data orien-
tation approaches to process orientation approaches. The initial focus of information technology
(IT) was on storing, retrieving and presenting information, data modelling. Modelling business
processes was often neglected, which resulted on confusing process logic, weak optimization, low
efficiency and adaptation. PAIS are “software systems that manage and execute operational pro-
cesses involving people, applications, and/or information sources on the basis of process models”
(Dumas et al., 2005). With the advent of the internet, business processes are required to adapt
easily and more frequently, within tight deadlines, responding to changes in the organization’s en-
vironment. Furthermore, fewer systems are designed and built from scratch. Existing applications
are dynamically reused and composed to build other applications and services, through integration
platforms.

Integration platforms enable business and service integration, and are introduced in this chapter,
with some of their major representative and research areas that led to service orchestrations. Notions
like Enterprise Application Integration (EAI) will be presented and discussed, along with Service
Oriented Architectures (SOA) and their important role while developing business processes and
implementing interoperability. Service oriented business processes, together with Business Process
Management (BPM), have emerged in the last years as the new foundations to achieve integration
of enterprise business processes or services, dictating and realizing a new paradigm, that of the
service orchestration. The purpose of service orchestration will be introduced, and its relevance
explained. Finally, the notion of service choreography, and how it can work together with service
orchestrations to deliver business and service integration, is presented and discussed.

2.1 Enterprise Application Integration

Business Process Management (BPM) is defined, according to (Aalst et al., 2003a), as a “generic
software system that is driven by explicit process designs to enact and manage operational business
processes involving humans, organizations, applications, documents and other sources of informa-
tion”. In other words, it is the collection of tools, methods, techniques that enable designing,

3

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

enactment and further analysis of business processes (Leymann et al., 2002). Typical Workflow
Management Systems (WfMS) (Aalst and Hee, 2002; Dumas et al., 2005; Sayal et al., 2002) de-
liver business process design and deployment, but BPM aims to extend this with business process
awareness. Figure 2.1 pictures the main differences between workflow systems and BPM, which are
process observation and analysis. In the modelling phase, processes are designed1 and implemented
using a process-aware application (e.g., a WfMS). Afterwards, the modelled business process is
deployed and executed. These two first phases may be seen as joint WfMS phases. The last two
phases, observation and analysis, consist on gathering pertinent information about the business
process execution, and applying this information to identify problems, measure performance and
improve the process model.

BPM

Analyse Model

Observe Execute

Vs.

WFM

Execute

Model

Figure 2.1: Business Process Management extends typical Workflow Management Systems

Cross-organizational business processes are becoming more important these days, along with
Service Oriented Architectures (SOA), supporting business processes within an organization and
between business partners2. Services are designed and deployed to perform tasks and processes,
so in a sense, business processes are conducted and executed by services (Decker et al., 2006).
Organizations are expanding their application portfolio every day, because they need to improve
quality, customer’s knowledge, increase supply chain efficiency, reduce market time. Keywords like
globalization, customization, digitalization, virtualization, agility and networkability are gaining
importance within organizations, and Enterprise Application Integration (EAI) has emerged as the
enabling springboard for business integration.

According to (Huang and Fan, 2007), EAI’s research level of integration can be classified as:

• Organization integration: Concerns about networked organizations and value models. Ad-
dresses the interactions between business strategy, organizational design, and information
system design.

• Process integration: Concerns about integration at the business level, i.e. business process
integration (BPI) and cross-organizational workflow management.

• Data integration: Relates to different data models (hierarchical, relational, etc), the syntactic
and semantic differences between exchanged information.

1There is a close relationship between process design and modelling. The former refers to the overall design
process and the latter refers to the representation of the business process model using a process language. In the
course of this work, process design and modelling shall be referred as the process representation concerning activity
and information flow, and also specific business rules.

2IBM - Web services architecture overview, http://www.ibm.com/developerworks/webservices/library/w-ovr/

4

http://www.ibm.com/developerworks/webservices/library/w-ovr/

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

• Application integration: Concerns about applications integration on heterogeneous platforms.

• Service integration: Deals with making services work together as a whole, solving their syn-
tactic and semantic differences. SOA has been the key reference for some years and service
orchestrations are amongst integration services.

• Semantic integration: Crosses all levels of EAI and deals with semantic equivalence between
organizations so that related entities can communicate and understand each other. Ontologies
and Semantic Web are two of the core technologies.

BPM and SOA have emerged in the last years as the “standards” for Enterprise Application Inte-
gration. These approaches separate design and business logic from implementation details, and are
proposed by the Object Management Group (OMG)3 as the foundations to achieve integration of
enterprise business processes and services. BPM, by revealing the activities that constitute the pro-
cess business flow, and the relations between them, delivers the necessary context for the definition
of services. SOA provides a way of implementing and executing such services.

The World Wide Web Consortium (W3C)4 refers to SOA as “a set of components which can
be invoked, and whose interface descriptions can be published and discovered”. Service Oriented
Architecture consists on several software applications, representing well defined and independent
services that may use other registered services, and are available in a network. Services are defined
by a standard definition language and communicate with each other. For instance, web services,
the most popular type of service today, uses Web Services Description Language (WSDL), Simple
Object Access Protocol (SOAP) and Universal Description, Discovery and Integration Registry
(UDDI) as standards (Leymann et al., 2002; Papazoglou and Heuvel, 2007; Pusnik et al., 2003; Aalst,
2003; Di Lorenzo, 2008). Web services and their associated standards can be used to implement
an organization’s functionality that can henceforth be used by other applications. This way it is
possible to integrate a miscellaneous of services, and enact business processes. Thus, using SOA,
an organization can create, deploy and integrate multiple services and even choreograph business
functions combining new and existing application assets into a logical business process flow. Figure
2.2 depicts this rationale, presenting the business process layer as an integration workflow of multiple
services, the service interface layer, and each service enabling an application resource from the
application layer.

To successfully enable SOA, some issues need to be addressed (Papazoglou and Heuvel, 2007):

• Enable each application as a service.

• Distributed services need to be orchestrated in order to build a distributed process.

• Deploy services and address security, reliability and scalability.

• Manage processes in a transparent way, without visibility to the underlying services.

Service orientation, as opposed to distributed architectures, reflects real-world processes and re-
lationships more closely. This common belief addresses that SOA can build a much closer to reality
model that solves real-world business process needs. SOA is a design technology and therefore tech-
nology independent. The most important aspect of SOA services is their reusability. (Papazoglou
and Heuvel, 2007) and (Ross-Talbot, 2005) refer to SOA services as having three main properties:

3Object Management Group (OMG), http://www.omg.org/
4W3C, World Wide Web Consortium, http://www.w3.org/TR/ws-gloss/

5

http://www.omg.org/
http://www.w3.org/TR/ws-gloss/

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

Business
Process
Layer

Service
Interface

Layer

Application
Layer

Figure 2.2: Service Oriented Architecture (SOA) (Ferreira, 2008)

1. Autonomous and self-contained, i.e., services keep their own state. They remain stateless
across invocations.

2. Platform independent. SOA’s loose-coupling principle states that there is a clear separation
between the service interface and its implementation. Interfaces must be externally visible so
that available linkages are understood.

3. Dynamically located, invoked and re-combined. Services can be located based on some dis-
criminating factor, like security and behaviour, using, for instance, service interfaces in WSDL
and UDDI lookups.

It is up to the workflow system to locate and bind services from one service to the other, structure
interactions between them, so as to achieve a business process. This is often referred to as a service
orchestration, a service broker that manages interactions between services, and sometimes human
agents, creating an activity and information workflow.

In (Busi et al., 2005; Ross-Talbot, 2005; Papazoglou and Heuvel, 2007; Pedraza and Estublier,
2009; Aalst and Verbeek, 2008), the notions of orchestration and choreography are taken into
account when designing service-oriented integration. Orchestrations are seen like single peer services
that can be invoked by other services at different times, and choreographies describe the overall
system. The notion of conformance between orchestrations and choreographies is also presented, in
the sense that the overall behaviour, the choreography, and every peer’s behaviour, the orchestrated
system, are aligned. According to (Pedraza and Estublier, 2009), a single orchestration system has
scalability problems, since a single computer machine is at the heart of the system, thus the hub of all
communications, and potentially becoming a bottleneck, whereas choreographies represent service
communication, since there is no central service. Orchestrations and choreographies are different,
but also complementary ways to define workflows and implement EAI, creating cross-organizational
business processes. These concepts will be addressed in the following sections.

6

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

2.2 Enterprise Service Bus

When connecting several applications and different technologies one might come across with two
mismatch types, technology or information model mismatches. To solve them, there are two possible
approaches;

• Change every client module to comply to every server module invoked, which is potentially
troublesome an unmanageable or;

• Insert a layer of communication and integration logic between modules, viz. Enterprise Service
Bus (ESB).

ESB is a highly distributable communication and integration backbone, a platform that provides
interoperability between SOA based solutions, establishing proper control of messages as well as
applying security, policy, reliability and accounting rules. ESBs, as depicted in Figure 2.3, aggregate
services, with a more efficient integration, to form composite business processes, which in turn
automate business functions in an organization.

ESB

Reliable asynchronous secure messaging

Service Interface

Custom

Applications
Service

Orchestration

Routing and

transformation

Figure 2.3: Enterprise Service Bus architecture, connecting several applications and technologies

Delivering Enterprise Application Integration (EAI) means that ESB’s enable broker function-
ality, by providing integration services such as connectivity, message translation and routing based
on business rules, data transformation, and application adaptors. These capabilities are themselves
SOA-based in the sense that they are spread across the bus in a highly distributed fashion, hosted in
separately deployable service containers. This means that ESBs have evolved from the primordial
store-and-forward mechanism found in middleware products, e.g., message oriented middleware, to
an EAI technology embracing web services, Extensible Stylesheet Language (XSLT) data transfor-
mation standards, orchestration, and choreography technologies. Also, becoming less centralized
than traditional integration brokers, allows for event-driven services to be plugged into the ESB
easily, whenever needed, and be scaled independently from each other. This is portrayed in Figure
2.3, where several applications running on different platforms are abstractly decoupled from each
other, but connected together through the ESB as logical endpoints and exposed as event-driven
services (Papazoglou and Heuvel, 2007; Sterff, 2006).

The advent of event-driven services has shortened the gap between the business context and the
business process design. In an organization, any business event such as a customer or production
order, may affect the course of a business process. This implies that business processes cannot

7

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

be designed assuming that all events are predetermined and follow a particular flow, but must be
driven by incoming event flows. Consequently, EAI must be built using an event-driven SOA, where
services are seen as abstract service endpoints and can respond to asynchronous events. There is
no longer any concern about protocol implementations or routing of messages, the ESB just simply
publishes the messages to the services that have subscribed to the events. In some cases, when
implementing SOA, service interfaces in WSDL and UDDI lookups are unavailable, disabling the
service discovery phase and providing a more lightweight and straightforward integration platform
(Papazoglou and Heuvel, 2007; Sterff, 2006). Event-driven SOA provides fully decoupled service
exchanges, not just loosely coupled, in the sense that any participant services do not need to
have any knowledge about each other, so there will no longer exist the need for a service contract
(WSDL). Every service subscriber must only have knowledge about the event meta-data, normally
XML-based, since the ESB will manage service relationships, in which every service can participate
as a subscriber, or publisher of events. So, the ESB needs to effectively orchestrate the service
behaviour enabling a distributed business process, using a distributed processing framework, and
XML-based services to overcome heterogeneous services.

ESBs play a crucial role in BPM solutions today, enabling sophisticated process orchestration,
thus creating a SOA capable of solving complex integration problems. Nowadays, there are sev-
eral ESB products developed by BPM vendors, such as IBM’s Websphere (Aalst and Verbeek,
2008), Sun’s Glassfish5, HP’s HP Process Manager6, BEA’s WebLogic7, Vitria’s BusinessWare8,
Microsoft’s Biztalk Server9 and Software AG’s WebMethods10, which allow organizations to model,
deploy, analyse, and refine process-driven integration solutions.

2.3 Service Orchestrations

According to (Ross-Talbot, 2005; Sterff, 2006; Peltz, 2003b,a; Di Lorenzo, 2008), a service orches-
tration is a recursive composition of services, in the sense that a service is built upon existing
services. Activity and message flow are controlled by an orchestration service, also encapsulating
workflow logic, the service logic. This can be depicted in Figure 2.4, where message exchanges and
business logic is present. WS-BPEL11 is the standard for orchestration language definition (Aalst,
2003; Pusnik et al., 2003; Moscato et al., 2005; Wassermann et al., 2006; Courbis and Heath, 2005).

Service orchestrations are used to compose and create services that belong to a specific process
participant, describing how services can interact with each other at the message level, and the exe-
cution order of such interactions, thus creating business processes from the composition of services.
Using service orchestrations, it is possible to develop, deploy and execute business processes that
interact with external services. Enabling service and process collaboration, and therefore provid-
ing potential integration endpoints for other processes or services, service orchestrations become
integration enablers.

Figure 2.5 illustrates a service orchestration, designed using Microsoft Biztalk integration server.
5https://glassfish.dev.java.net/
6HP Press release, http://www.hp.com/hpinfo/newsroom/press/2001/010723b.html
7Oracle has acquired BEA Systems, http://www.oracle.com/appserver/weblogic/weblogic-suite.html
8http://www.vitria.com/products/businessware/
9http://www.microsoft.com/biztalk/en/us/Default.aspx

10http://www.softwareag.com/corporate/products/wm/default.asp
11Web Services Business Process Execution Language, specs. available at http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

8

https://glassfish.dev.java.net/
http://www.hp.com/hpinfo/newsroom/press/2001/010723b.html
http://www.oracle.com/appserver/weblogic/weblogic-suite.html
http://www.vitria.com/products/businessware/
http://www.microsoft.com/biztalk/en/us/Default.aspx
http://www.softwareag.com/corporate/products/wm/default.asp
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

Service

Service

orchestration

Figure 2.4: Service orchestration as a workflow logic with service composition

As one can observe, there is an activity flow with message exchanges and some service logic. The
process model depicted in Figure 2.5 is easily understood, starting by receiving a request message,
in the “ReceiveRequest” activity, through some communication port. This message contains an
order request with the quantity for some product. The “CheckQuantity” activity is no more than a
business rule that simply investigates this quantity and follows some rule. If the request is accepted,
the request is sent to the ERP system through the “SendReqToERP” activity. Otherwise, a request
denied message is constructed and sent back using some other communication port.

Figure 2.5: Service orchestration design in Microsoft Biztalk integration platform

As mentioned before in Section 2.1, service orchestrations are centralized services, thus poten-
tially becoming a bottleneck, but they can be deployed as web services or communicate with other

9

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

orchestrations, which can implement a more distributed service orchestration, enabling scalability
and improving performance; “Through the use of orchestrations, service-oriented solution envi-
ronments become inherently extensible and adaptive, and, for many environments, orchestrations
become the heart of SOA” (Erl, 2005).

2.4 Choreographies

Organizations use SOA to create logical business process flows that enable collaboration and inter-
operability. However, collaboration between different organizations requires rules and understand-
ability. Service choreography addresses this issue, defining message exchanges from several services,
controlling the collaboration logic.

Service choreography is a description of the externally observable interactions between existing
services or orchestrations. These interactions are viewed from a global perspective and not from a
service perspective (Peltz, 2003b; Fortis and Fortis, 2009; Peltz, 2003a; Di Lorenzo, 2008). Whereas
an orchestration dictates a process execution flow, that of the broker service, describing business
workflows within one organization, choreographies do not. Rather they describe the common ob-
servable interactions, the collaboration message flows between different organizations and services,
without mandating any execution flow. The Web Services Choreography Description Language
WS-CDL12 is the standard for composed interoperability and peer-to-peer collaboration (Pedraza
and Estublier, 2009; Decker et al., 2006; Sterff, 2006; Fortis and Fortis, 2009; Peltz, 2003b).

Figure 2.6 shows an illustration of an organization’s service architecture, where several services
work together based on a SOA. Some of the represented services may belong to the organization

Service 1

Orchestration

1

Service 2

Orchestration

3

Service 3

Orchestration

4
Service 1

Orchestration

2

Web Service

1

Web Service

2

Figure 2.6: Choreography as a structured interaction between service orchestrations in different
organizations

while others do not, so the collaboration logic is not controlled by one single organization. Instead,
there is a community interchange pattern (Sterff, 2006) that enables services from different orga-
nizations to expose their functionalities and collaborate, establishing a choreography that can help
EAI become more agile, since it is not very hard to compose, extend and reuse services.

12Web Services Choreography Description Language, specs. available at http://www.w3.org/TR/ws-cdl-10/

10

http://www.w3.org/TR/ws-cdl-10/

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

In choreography, there is no central hub, all services are distributed along several nodes, this
way enabling scalability. But there is also the discoverability issue, since participant services need
to find and use other provided services, making choreographies difficult to specify and implement.
In (Pedraza and Estublier, 2009), a distributed orchestration approach13 to choreographies is in-
troduced to deal with these issues. A flexible decentralized orchestration is proposed, in which
a traditional orchestration model is executed in a number of nodes, so called as choreography
servers. This approach tries to fill the gap between “pure” orchestration and “pure” choreogra-
phy, since choreography servers are implemented using traditional orchestration engines, enabling
a distributed orchestration similar to the one depicted in Figure 2.6.

Choreography is the blueprint of the overall system, the service collaboration, not through
a single workflow model, but by the set of messages that are exchanged between services, whilst
orchestrations are a means of realizing the system, “business-specific applications of a choreography”
(Erl, 2005). Together they can be used to implement EAI and build business processes from
composite services, complementing each other.

2.5 Conclusion

This chapter has introduced integration platforms and some of their major challenges, research
areas, and paradigms concerning service integration. Service orchestrations were presented as re-
cursive composition of services, and therefore integration enablers, providing service and process
collaboration. Although service orchestrations are centralized services, they can be deployed as
web services or communicate with other service orchestrations, enabling service-oriented solution
environments. Service collaboration issues, along with service choreographies, were also discussed,
as descriptions of the externally observable interactions between services or service orchestrations.
Choreographies describe the collaboration message flows between different endpoints, or exposed
services, providing the blueprint of the overall system. In the following chapter, process mining
will be presented, and shown how it can help to deliver “hidden” knowledge about the run-time
behaviour of deployed service orchestrations.

13FOCAS, Framework for Orchestration, Composition and Aggregation of Services.

11

Analysis and Discovery of Service Orchestrations 2. Integration Platforms

12

Chapter 3

Process Mining

The relevance of business process awareness has become increasingly important inside organizations
in recent years. Business Process Management extended process design and deployment with process
observation and analysis, not only because effective process cost reductions are important, but also
to identify problems, measure and improve process performance, and redesign business processes.
Process mining is introduced in this chapter, along with its main goals and most relevant and
useful techniques and research areas, having in mind Service Oriented Architectures, and more
specifically, service orchestrations, and how such techniques are applicable. ProM, a process mining
framework is also presented, and some of its mining plugins and features revealed, contextualizing
the framework with service orchestrations.

3.1 Domain

Process mining, business process mining, workflow mining or even automated business process
discovery (ABPD)1, aims to extract information from transaction or event logs, and “build” the
process models most suitable to represent the behaviour found in such set of real executions. Process
mining is the retrieval of “hidden” knowledge about a process or service, under some perspectives,
improving the process model itself and its awareness. Its goal is the automated process information
discovery from a process event log.

Any information systems such as Customer Relationship Management (CRM), Workflow Man-
agement (WfMS), Enterprise Resource Planning (ERP), or Business-to-Business (B2B) systems,
have some kind of event log, sometimes referred to as “history”, “audit trail”, or “transaction log”.
Often these logs are placed in a single file, several files, or databases.

Table 3.1 shows the process log retrieved from the deployed service orchestration presented in
Section 2.3; (i) Process instance refers to each orchestration’s case or instance2; (ii) Activity refers
to each task or instruction. In the case of service orchestrations, these tasks are mainly system
activities, decision points or communication ports, but there can be human interaction activities
also; (iii) The event type represents the transactional model of each event, and is useful to service

1According to Gartner’s article, http://blogs.gartner.com/jim_sinur/2009/03/12/automated-business-process-
discovery-helps-visually-optimize-processes/

2Instance numbers used in Table 3.1 are for simplicity reasons only, since process instance numbers retrieved
from the event log are unique identifiers (UUID).

13

http://blogs.gartner.com/jim_sinur/2009/03/12/automated-business-process-discovery-helps-visually-optimize-processes/
http://blogs.gartner.com/jim_sinur/2009/03/12/automated-business-process-discovery-helps-visually-optimize-processes/

Analysis and Discovery of Service Orchestrations 3. Process Mining

Process Instance Activity Name Event Type Originator Timestamp
1 Initialization start ... 28-10-2009 19:33:51.293
1 ReceiveRequest start ... 28-10-2009 19:33:51.357
2 Initialization start ... 28-10-2009 19:33:51.370
2 ReceiveRequest start ... 28-10-2009 19:33:51.370
2 ReceiveRequest complete ... 28-10-2009 19:33:51.370
2 CheckQuantity start ... 28-10-2009 19:33:51.370
2 ConstructRequestDenied start ... 28-10-2009 19:33:51.370
1 ReceiveRequest complete ... 28-10-2009 19:33:51.573
1 CheckQuantity start ... 28-10-2009 19:33:51.573
1 SendReqToERP start ... 28-10-2009 19:33:51.590
2 ConstructRequestDenied complete ... 28-10-2009 19:33:51.600
2 SendReqDenied start ... 28-10-2009 19:33:51.600
2 SendReqDenied complete ... 28-10-2009 19:33:51.600
2 CheckQuantity complete ... 28-10-2009 19:33:51.600
2 Initialization complete ... 28-10-2009 19:33:51.600
1 SendReqToERP complete ... 28-10-2009 19:33:51.620
1 CheckQuantity complete ... 28-10-2009 19:33:51.620
1 Initialization complete ... 28-10-2009 19:33:51.620

Table 3.1: Service orchestration’s event log

orchestrations when dealing with parallelism, since information about the beginning and ending of
each activity is available, as start and complete event types (iv) Originator gives reference to whom
has started or executed the activity, the performer; (v) Timestamp is the execution time of each
activity.

As one can see from examining the event log, there are two process instances with different ac-
tivities, hence different paths. All events are totally ordered and their timestamps are quite similar,
only diverging from milliseconds. Even though there are two process instances executing, both start
and end their execution within the same second, and some different activities are processed at the
exact same timestamp. Event logs such as the one presented in Table 3.1 are the starting point for
process mining, but it is very important to apply and confront mining tools, and techniques, using
event logs taken from real-life applications which model real-life processes. Only this way one can
start to overcome process mining challenges and really check its effectiveness (Aalst et al., 2007).

Figure 3.1 illustrates process mining domain and resulting interactions. Considering this reality
and introducing it into the service orchestrations domain, the following challenges were identified
(Aalst and Weijters, 2004, 2005):

1. Different mining perspectives - The dominant perspective of process mining is the control-
flow or process perspective, which is concerned about the ordering of tasks, the process flow.
Nevertheless, there are other perspectives of interest, such as: organization, information and
application perspectives:

(a) Control-flow perspective is concerned about the ordering of tasks, the logical flow.

(b) Organization perspective deals with the organization structure, and can be used to derive
work relationships, responsibility, availability, accountability, etc.

(c) Information perspective refers to management data or production data, like additional
process data flow information.

14

Analysis and Discovery of Service Orchestrations 3. Process Mining

Business Processes

People

Machines

Organizations

Supports/controls
Information

Systems

Event Logs

Models

analyzes

Records

events, e.g.,

messages

transactions,

etc.

Discovery

Conformance

Extension

Specifies

configures

implements

analyzes

Figure 3.1: The Process Mining domain, adapted from (Aalst et al., 2009)

(d) Application perspective deals with the applications used to execute tasks.

Process mining results are orthogonal to these perspectives, since they may refer to the logical
process structure, the process model, or other germane performance issues.

2. Incomplete logs or incompleteness - Rare or inexistent paths may lead to an incorrect process
model. This happens when a log is incomplete, not containing enough information to derive
the process, and heuristics are needed to undertake this problem. These heuristics are typically
based on Occam’s razor principle3. Sometimes one must assume that what is not present in
the event log, does not belong to the process, recognizing a possible underlying mistake (Aalst
et al., 2007).

3. Concurrency or parallelism - Distinction between start and end events in the event log helps
detecting concurrent activity execution (Wen et al., 2004).

4. Information and log integration from heterogeneous sources - MXML, as in Mining-XML, is
a standard XML format that can be used to tackle this issue. This format permits to import
event logs from distinct systems and this way allowing an abstraction of each heterogeneous
source (Günther and van der Aalst, 2006; Aalst et al., 2007). Figure 3.2 illustrates the MXML
format used in process mining, using a UML class diagram. Considering the event log from
Table 3.1, the mappings for each element are as follows; Source element contains information
about the software or system that was used to record the log; The process element indicates
the process holding multiple cases, or instances, so this way it is possible to include several
processes in one MXML log file; Every ProcessInstance can contain several AuditTrailEntry
elements, each representing one activity. WorkflowModelElement represents the activity name
in the event log; The Data element can be used at various levels to add additional information.

3Occam’s razor principle, entia non sunt multiplicanda praeter necessitatem, is the principle that states, “When
you have two competing theories which make the same predictions, the simplest explanation or strategy tends to be
the best one”.

15

Analysis and Discovery of Service Orchestrations 3. Process Mining

1..∞

1

0..1

0..∞
1 1

Data

ProcessSource

WorkFlowLog

1

0..∞

0..1

0..1

0..1

0..1

Attribute

WorkFlowModel

Element
Originator

0..1

0..1

1 1 0..1 0..1

1

Process

Instance

TimestampEventType

AuditTrailEntry

Figure 3.2: UML diagram of the MXML format (Günther and van der Aalst, 2006)

5. Visualize and interpret results - Visualizing the complete control-flow or other perspectives
is not as straightforward as one may think. Presenting process mining results in a way
that makes possible to gain clear insight of the process is a challenge, often mentioned as
“management cockpit”4.

6. Model analysis and conformance - Aims to detect discrepancies between process model and
deployed process execution (viz. Delta Analysis). In (Aalst et al., 2003b, 2004), a workflow
mining technique is introduced, with the purpose of collecting data from Workflow Manage-
ment Systems (WfMS), and applying delta analysis to diagnose and redesign the model. This
approach results in an “a posteriori” process model that can be compared with the “a priori”
model. In (Rozinat and van der Aalst, 2008), an incremental approach to check the confor-
mance of processes based on monitoring real behaviour is presented. The notions of fitness and
appropriateness are introduced. Fitness measures how the executed process complies with the
specified behaviour found in the previously designed model, hence how the event log fits the
model. Appropriateness measures if the model describes the observed behaviour in a suitable
way. The idea of Occam’s razor is once again captured, i.e., “one should not increase, beyond
what is necessary, the number of entities required to explain anything”. Appropriateness can
be distinguished between two categories:

(a) Structural - The simplest model should be chosen to explain the retrieved behaviour
from the event log.

(b) Behavioural - The model should not be too generic and allow for too much behaviour.

7. Model extension - Discover information that will enhance the process model.

Unlike classical data mining, the focus of process mining is the process, aiming to extract, from a set
of event logs, several process-oriented information. This information may be used, amongst other
things, to detect the conformance between the existing and conceived process model, when it exists,

4See Fujitsu’s Automated Process Discovery and Visualization Service,
http://www.fujitsu.com/global/services/software/interstage/abpd/

16

http://www.fujitsu.com/global/services/software/interstage/abpd/

Analysis and Discovery of Service Orchestrations 3. Process Mining

and the “real” process, learned from real performance. However, process mining must often work
side by side with the organization’s knowledge about the modelled process to accomplish positive
results (Aalst et al., 2007, 2009). Dissimilarities between real and idealized models often happen
since it is not easy to predict every possible situation when designing one business process. Moreover,
actual times require high flexibility and strong dynamism, meaning that business processes must
be ready to adapt easily.

The objective usefulness of mined process information for an organization can be classified by
three different perspectives:

• Support the execution of new systems.

• Facilitate business process improvement and redesign.

• Achieve control and knowledge over business processes.

Through process mining, it is possible for an organization to attain feedback to some questions and
understand what is really going on, control is seized. Considering service orchestrations, these are
some of the relevant questions that can be answered using process mining techniques:

1. How is the service orchestration modelled? What are the business rules? Are they coherent
and executed correctly?

2. How was the service orchestration built? How many versions does it have? Can one see its
growth along time?

3. What are the most frequent paths and their execution probabilities along the service orches-
tration?

4. What is the average/maximum/minimum performance time for each activity and for the
whole orchestration? And for external services, whenever present?

5. Is the process model efficient and adequate for its purpose? Are there any bottlenecks? What
are the critical paths?

6. How does the service orchestration’s run-time behaviour conform with the previously designed
model?

7. What are the external service communications?

8. What is the service architecture in the organization?

The following section will present some techniques that will help to tackle these questions, and find
some meaningful answers.

The interest to monitor and seize control over business processes has been growing inside or-
ganizations over the last years. Furthermore, new legislation and regulation acts start to impose
more internal control requirements, therefore increasing the pressure for higher governance maturity
levels inside organizations (Ferreira and Mira da Silva, 2008; Zhang, 2007).

Top management needs to better understand their organizations, how they really work, and not
how they think they work. “The key to achieve this goal and completely read one organization, is
to fully realize its organizational DNA, the sequence of activities that use, alter or process several
resources, physical, informational or human, i.e. the organization’s business processes” (Tribolet,
2005). Process mining is here to help us grasp this knowledge.

17

Analysis and Discovery of Service Orchestrations 3. Process Mining

3.2 Mining Techniques

When applying process mining techniques, it is of most relevance to understand that there is a strong
relationship between the mining algorithm and the type of challenges it can successfully handle (cf.
Section 3.1). Although every process mining technique extracts process-oriented information from
an event log, not all mining techniques are best suited for every perspective and log related issues.
Also, it is very important to realize at the starting point which is the type of process model that best
fits with the data from the workflow log, so it is possible to choose the best process representation
language (Petri net, block-oriented process models, event dependency models, etc). This choice
strongly influences the mining algorithm5. Local-global dimension also has a strong role when
selecting the most adequate mining algorithm. Local strategies are based on local information and
build the process model on a step by step basis. Global strategies try to gather every possible
information and build the process model with only one search (Aalst and Weijters, 2004; Medeiros
et al., 2007).

Taking this information into consideration and applying it into the service orchestrations analysis
domain, one can find some issues that need to be regarded. Service orchestrations are often built
and deployed within several iterations, which leads us to the incompleteness of some log events.
This issue can be dealt with by using two different approaches:

1. Considering several orchestration service versions.

2. Using robust heuristic mining algorithms.

This way it is possible to focus the analysis on the process instead of modelling every behaviour
learned from the event log. Considering the control-flow perspective, one need only consider the
process instance and its activities. Since logs come originally ordered, using timestamp, although
it might help to gather dependency and causality, is not relevant. With this information, different
techniques may be applied, such as:

1. α-algorithm - Builds a Petri net that models the process learned from the event log, but has
some limitations, like concurrency and incompleteness problems (Aalst and Weijters, 2005;
Aalst et al., 2004; Medeiros, 2006).

2. β or Tsinghua-α algorithm - Exploits the fact that tasks have execution timestamp informa-
tion, to build modelled processes using Petri nets. It is related to the α algorithm but with a
different approach, since it uses start and complete event types to explicitly detect parallelism
(Wen et al., 2004).

3. Heuristic miner - Uses a frequency based metric to indicate certainty of dependency or causal-
ity relations. It is robust for concurrent processes and real-life logs (Weijters and van der Aalst,
2003, 2002; Aalst et al., 2007).

4. Genetic miner - Is an adaptive global search method in which every process instance is eval-
uated according to a fitness measure that quantifies how well does every process instance
exhibits the behaviour “learned” from the log. It deals well with noise and incompleteness
(Medeiros et al., 2005; Aalst et al., 2005; Medeiros et al., 2004, 2007; Medeiros, 2006).

5Inductive Bias - Guessed outputs are strongly refined by prior information, or inputs. In practice, many process
mining algorithms have a strong inductive bias.

18

Analysis and Discovery of Service Orchestrations 3. Process Mining

Process mining’s organization perspective is concerned about the resource that executed or initiated
one specific activity, also called originator. This information can be used to derive knowledge about
roles and groups, collaboration relationships and efficiency, hence, the organizational structure.
Service orchestrations are mainly system tasks that control the information flow, apply business
rules, and interconnect other services, so it seems more interesting to consider a different perspective
that could be mentioned as an interoperability or even choreography perspective (cf. Section 2.4).
Both metrics, work transfer and subcontracting (Bozkaya et al., 2009), could still be used to discover
the organization’s service architecture network. Therefore, this analysis must be done at the process
level and not at the activity level, unless there is some kind of integration platform for heterogeneous
services or logs. If such a log integrator was implemented, then the originator field could have a
different meaning. It would be important to know, in an interoperability perspective, which service
or node executed each activity, so, using this approach, the originator field can be used to keep
this trace. Considering each service as a node, it would also be interesting to verify and study each
node’s links and centrality, using centrality metrics (Borgatti, 2005) (e.g., betweenness, in and out
closeness, etc), building what can be described as a super-process or multiple service orchestration,
a distributed orchestration choreography (cf. Section 2.4) (Pedraza and Estublier, 2009).

3.3 Mining Web Services

As discussed in Chapter 2, Service Oriented Architectures play an increasing role in enterprise busi-
ness process integration. Services are used to implement an organization’s functionality that can be
utilized by other organizations, enabling service integration, and business process interoperability.
Service orchestrations define another abstraction layer in which services are built upon existing
services, hence service reutilization and composition. Even though service orchestrations enable
service composition and therefore business collaboration, they are centralized services that can be
deployed as web services and communicate with other service orchestrations, becoming integration
enablers.

Web service mining has been introduced by (Gombotz et al., 1999) with the purpose of analysing
web service interaction, according to two different challenges:

• Discovering complex patterns within web services.

• Supervising and monitoring web services.

In (Gombotz et al., 1999; Dustdar et al., 2004; Gombotz and Dustdar, 2005; Dustdar and Gombotz,
2007), a web services interaction mining architecture (WSIM) is proposed, in which three levels of
abstraction are presented, and a normative log format, or specification, is introduced for each level:

1. Web service operational level Observes only one single web service and its internal be-
haviour. The proposed log specification for this level contains:

(a) Activity, meaning operation name.

(b) Performer, the client web service.

(c) Status, either start or complete.

(d) Timestamp, each activity’s execution time.

19

Analysis and Discovery of Service Orchestrations 3. Process Mining

As one can observe, the presented log specification is close related to the MXML log file
format (cf. Section 3.1).

2. Web service interaction level Observes only one single web service, but with regards to its
interactions with other services. In these interactions, services are considered to act either as a
consumer or a provider. To achieve this step, interactions must be logged. Types of interaction
are presented as being; one-way; request-response; solicit-response and notification.

3. Web services workflow level Observes the overall interactions and collaboration between
web services (Novatnack and Koehler, 2004). It tries to identify workflows, or business pro-
cesses implemented using web services. The problem is that in order to successfully mine exact
distributed workflow models, workflow log information must be present in service-oriented sys-
tems. In (Gombotz and Dustdar, 2005; Dustdar and Gombotz, 2007), a web services workflow
mining approach is presented, along with a classification of service-oriented systems accord-
ing to the richness of the log data they provide. However, no service orchestration or BPEL6

environments are used. (Gaaloul et al., 2008) presents a patterns mining algorithm that aims
to discover the implicit orchestration process based on analysing individual patterns. A sta-
tistical technique is used to discover patterns in execution logs from a set of web services that
interact with each other. Using this distributed interaction logic, since there is no orchestra-
tion process, the algorithm formalises the orchestration logic and explores if it can be mapped
to an explicit BPEL language.

The presented mining approaches are never related to explicit service orchestration, instead, they
relate to implicit orchestrated processes, in a sense that each web service’s behaviour and patterns
are analysed so as to build the overall and distributed system behaviour. According to (Gombotz
and Dustdar, 2005; Dustdar and Gombotz, 2007), the web services interaction mining architecture
(WSIM) is one step behind web service orchestration, since it deals with service-oriented systems
that do not apply web service orchestration tools. The former web services workflow level is indeed
more related to service choreographies, whereas the web services operational level and the inter-
action level together with service workflow and orchestration logic can be considered as a service
orchestrations’ mining approach. Both levels relate to one single web service and its interactions
with other services, and so, introducing workflow or orchestration logic, they become service or-
chestrations.

3.4 ProM: a Process Mining Framework

Although there are currently some academic and commercial tools self-proclaimed as Business
Process Analysis (BPA), Business Activity Monitoring (BAM), Business Operations Management
(BOM) or Business Process Intelligence (BPI) applications, such as IBM’s Cognos7, or SAP’s
BusinessObjects8, the truth is that many of them are limited to performance analysis, not enabling
real process discovery, the control-flow perspective (Dongen et al., 2005; Aalst et al., 2007).

ProM is a “pluggable” environment framework designed for process mining. Since there are
many information systems, each of them with its own log file format, ProM has developed a generic

6BPEL, namely WS-BPEL, was mentioned in Section 2.3.
7IBM Cognos, http://www-01.ibm.com/software/data/cognos/
8SAP BusinessObjects, http://www.sap.com/solutions/sapbusinessobjects/index.epx

20

Analysis and Discovery of Service Orchestrations 3. Process Mining

XML format to store a log in, named MXML (cf. Section 3.1). After mapping the event log to the
MXML format, ProM can be used to start process mining analysis, from every perspective, and
several mining plugins can be applied. It is also possible to add new plugins and export/import
results to/from other formats. Figure 3.3 presents an overview of the ProM framework, depicting
the relations between the framework, the process log format MXML, and the several plugin types.

User

Interface

+

User

Interaction

Result Frame

Log Filter

Visualization

Engine

Import

Plugins

Conversion

Plugins

Export

Plugins

Mining

Plugins

Analysis

Plugins

Figure 3.3: ProM framework (Dongen et al., 2005)

There are three main types of mining plugins available (cf. Figure 3.1) (Aalst and Verbeek,
2008; Aalst et al., 2009), namely:

• Discovery plugins: Based only on data retrieved from the event log.

• Conformance plugins: Based on an event log and deployed models. These plugins try to find
matching behaviour between mined event logs and the process model, hence if real process
execution conforms with the designed model.

• Extension plugins: Try to improve and extend deployed models through process mining.

In the context of service orchestrations, discovery and extension mining plugin types are useful and
can be applied. Conformance plugins can only be applied if parsed service orchestration models
are exported. Although ProM can be used to analyse service orchestrations and therefore help
organizations to answer some of the questions stated before (cf. Section 3.1), there are still some
points that actual process mining paradigms cannot completely deal with, namely questions 2, 7 and
8. Therefore, one solution is presented in the next chapters, based on a process mining methodology
applied to service orchestrations, and a software application that implements this methodology and
unveils these questions.

3.5 Conclusion

This chapter has discussed process mining, presenting its major goals, challenges, research areas
and useful techniques concerning Service Oriented Architectures, and, more specifically, service or-
chestrations. Some of the relevant questions and problems concerning service orchestrations were
presented, such as incompleteness and parallelism, along with mining techniques that may be ap-
plied to deliver solutions. ProM, a process mining framework, was also presented, and its relevance

21

Analysis and Discovery of Service Orchestrations 3. Process Mining

concerning the analysis and discovery of service orchestrations discussed. In the following chapter,
a proposed solution based on a process mining methodology, with the purpose of analysing event
logs from deployed service orchestrations and discovering the orchestration’s run-time behaviour,
unveiling process-aware and performance information, will be presented.

22

Chapter 4

Mining Service Orchestrations

The proposed solution is based on gathering information from the deployed orchestration’s event
log, and using process mining techniques so as to deliver useful information, such as run-time
behaviour and other process-aware and performance information. A service orchestrations’ mining
methodology will be introduced in this chapter, where every phase is discussed and explained
with more detail. The proposed solution will be demonstrated using Microsoft Biztalk integration
platform, and orchestration from Section 2.3 used as an example to verify delivered results.

4.1 Methodology

This solution is focused mainly on the control-flow, or process perspective, since the main concern is
in gathering the service orchestration’s design model. Besides the logical model, some performance
issues are also of interest. Figure 4.1 illustrates the main steps involving the proposed ADSO process
mining methodology, where ADSO stands for “Analysis and Discovery of Service Orchestrations”.

Figure 4.1: Analysis and discovery of service orchestrations (ADSO), the mining methodology

To perform the depicted ADSO mining methodology, the following phases are presented (Aalst
et al., 2009; Bozkaya et al., 2009):

1. Log extraction: Identify every relevant information and where it is stored by the integration
platform. It is important to notice that since the objective is to obtain the process model
performed by the orchestration service1, the orchestration’s design model, no log information
from presently running and still incomplete orchestration instances will be extracted. This
way, some of the problems related to the following inspection step (cf. Section 3.1) are avoided
and may be solved “a priori” (e.g., incompleteness).

1Referentiates the orchestration itself as an available service or process, and not the external services invoked
by the orchestration. To avoid misinterpretation, whenever an external service is considered, it will be referenced
explicitly.

23

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

2. Log inspection: Event logs are retrieved and pre-processed. Errors or some inconsistencies
are checked and unnecessary information is removed. This step is also useful when applying
filters, like choosing process instances by date or by deployment version.

3. Log aggregation: The ordering of activities is retrieved, and the executed logical flow modelled.
There are two possible ways here, namely:

(a) MXML log file: The pre-processed log file is mapped to MXML format (cf. Section
3.1). WorkflowModelElement, EventType, Timestamp and Originator elements are used.
Considering the event types found in the logs, only two types from the transactional
model (Dongen et al., 2005) were chosen, start and complete. The MXML log file can
therefore be used by another system, such as the ProM framework, to retrieve the process’
logical flow.

(b) Process model: Using a control-flow perspective, data is mined and the orchestration’s
design model is created. A dependency frequency table (Weijters and van der Aalst,
2002, 2003) is built to achieve this step.

4. ProM analysis: Process mining analysis can be performed by the ProM framework, using the
previous MXML log file.

5. Model Visualization: The orchestration’s design model can be visualized, by means of a
dependency graph.

6. Performance analysis: Activity and process performance can be analysed, regarding execution
times and path probabilities.

7. Conformance analysis: The execution or run-time behaviour of the mined orchestration can
be compared with the idealized and initially designed model. Both models can be matched to-
gether, showing any existing discrepancies between the initial process model and the deployed
process execution (Rozinat and van der Aalst, 2008).

8. Service network architecture: External communications are analysed and reported, which can
be used to discover the wider service architecture (cf. Figure 2.6).

All phases involved in the ADSO methodology can be seen as the breadcrumbs to discover process-
aware information about service orchestrations. Each step will be discussed in detail in the following
sections.

4.2 Log Extraction

Deployed orchestrations leave a trace of their executed activities and other related information in a
history log. In the case of the deployed orchestration presented in Section 2.3, and considering again
Microsoft Biztalk integration platform, this data is stored in a Microsoft SQL Server database. The
retrieved process log, the orchestration’s event log presented in Table 3.1, shows only a few of the
myriad of data found in such execution generated logs. The purpose of log extraction is to identify
and correlate every relevant data found about orchestration instances, namely:

24

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

• Process or service instance id itself, which refers to every orchestration’s case identification.
Service instance ids are unique identifiers (UUID).

• Activity or instruction ids, which are unique identifiers (UUID) and specific to the integration
platform. Instruction ids will not be present in the process’ event log, they are mainly used
to relate instruction names and types.

• Activity or instruction name, a text identifying every task performed by the orchestration.

• Activity or instruction type, which indicates the specific BPEL2 activity type. This infor-
mation is not relevant to the log aggregation phase, however, it will be very useful when
performing phase 2, log inspection, and phase 5, visualization, designing the process model.

• Event type, that is to say the transactional model of each event. The event types used are
only start and complete event types. As referred before, this information is very important
when dealing with concurrency and parallelism, since it helps to understand every activity’s
precedence.

• Originator, defines who has started or executed the activity. Considering service orchestra-
tions, all activities are performed by the system, even when human interaction is present.
Therefore, it is considered that the server or node name is indeed the activity performer.
This conclusion is also of utmost interest when defining service interoperability, as it enables
gathering each activity’s service placement information in a distributed orchestration network
(cf. Section 2.4), a choreography.

• Timestamp, the start and end time of each orchestration’s instance and execution time of
every inherent activity. As presented before in Table 3.1, activity timestamps can sometimes
diverge from milliseconds. Orchestration instances and their activities are ordered according
to their corresponding timestamps.

• Orchestration version. Version ids, which are also unique identifiers (UUID), and their deploy-
ment timestamps are retrieved. Version information is very useful, as it enables orchestration
growth analysis, which helps to understand how the orchestration was developed along time,
and also improves designed model understandability.

• Communication ports. Port name, direction3 and timestamp information are retrieved. Even
though port retrieval and perception is not specific process-aware information, it will become
helpful when defining the service network architecture and interoperability.

Instance information in Microsoft Biztalk can be found using tables from the simplified database
model depicted in Figure 4.2. Table dba_ServiceFacts keeps information about each orchestration’s
name, state, either complete or terminated, start and end time, version, and instance identification
(UUID), amongst others. Table dta_ServiceInstances stores information about each orchestration’s
instance execution mappings, such as serviceID, which indicates the orchestration’s version, start
and end times, and other execution related data, like error information. Table dta_DebugTrace
keeps information about each instance’s activity sequence and execution time, stored as begin and
end timestamps.

2BPEL, namely WS-BPEL, was mentioned in Section 2.3.
3Communication ports are mainly send and receive direction ports.

25

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

dta_ServiceFacts

 Service/Name

 Service/Type

 ServiceInstance/State

 ServiceInstance/StartTime

 ServiceInstance/EndTime

 Service/AssemblyVersion

 Service/DeploymentTime

 ServiceInstance/InstanceID

 Service/VersionGUID

dta_DebugTrace

 uidServiceInstanceId

 vtInstructionId

 nServiceSequence

 nBeginInternalSequence

 nEndInternalSequence

 dtBeginTimeStamp

 dtEndTimeStamp

dta_ServiceInstances

 uidServiceInstanceID

 uidServiceID

 dtStartTime

 dtEndTime

Figure 4.2: Microsoft Biztalk simplified database model with orchestration instance information

Only information about finished orchestration instances is gathered, either completed or ter-
minated instances4. A terminated instance represents an orchestration’s execution that did not
complete its entire flow and was terminated either by the user, or system, or by an error. Com-
pleting its entire flow, means that the orchestration’s instance starts in one start activity, and ends
in one predicted end activity5. The purpose of retrieving only completed or terminated instances
information, is to solve some problems about incompleteness that could arise if information about
instances in execution were to be gathered.

4.3 Log Inspection

After identifying and correlating every relevant data about deployed orchestration instances, event
logs are retrieved and pre-processed, errors and inconsistencies checked and unnecessary informa-
tion removed. Needless or problematic data concerning any specific integration platform must be
distinguished and dealt with, such as:

• Reserved activity or instruction ids. Some activity ids may be reserved by the integration
platform. Unnecessary activity ids are removed.

• Reserved activity or instruction names. Since instruction ids relate to instruction names,
there may exist reserved activity names that must be recognized.

• Consistent activity or instruction names. Different activities must not have the same name.
However, the same activity may appear several times in the process. Since it is the responsi-
bility of the orchestration’s developer to name activities during development, and considering
again Microsoft Biztalk integration platform, where activity name checking is not done, this
constitutes as a problem. Without name consistency, the control-flow perspective of the mined
orchestration is not altered, although the mined process model may be misinterpreted. Nev-
ertheless, other process mining results, like performance issues, are hugely degraded, since
different activities are misguided as being similar. One way to deal with this issue is to cor-
relate activity names with their corresponding scope in the orchestration’s process, whenever
scope type activities are present6. If an activity presents itself “inside” a scope type activity,
its name is changed to “Scope Activity Name.Activity Name”. This solution, however, does

4Service orchestration instances can be in execution, completed or terminated states.
5Last activity executed by one orchestration instance.
6A BPEL scope type activity is a collection of activities, where local variables, messages and correlations may

be used.

26

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

not solve every problem, since scopes may not be present, and even when they are, it is al-
ways up to the developer to decide each activity’s name. Another possible solution is to label
activities using their unique position in the event log, and therefore in the process, using the
previous and/or following activities to deliver name consistency.

• Reserved activity types. There may exist some activity types that are not standard BPEL
activities. These cases must be analysed, identified and correctly interpreted. Others may
have specific integration platform names, so the correct “translation” to the BPEL standards
is useful when designing the process model. Scope type activities, when present, must be
identified and their internal activities correlated together, to assure consistent activity naming,
as referred before.

• Reserved event types. Since the transactional model used for every event consists only in
start and complete event types, others are discarded.

• Timestamp formats can differ, so a standard should be established and used accordingly. The
MXML timestamp standard format can be a good choice, since the resulting pre-processed
event log will be mapped to this format in the log aggregation phase.

Figure 4.3 shows one SQL query that retrieves orchestration instance information. Once more,
the deployed orchestration presented in Section 2.3 is used. As one can observe in the SQL query,
the ServiceInstanceId, representing the process case identification, the orchestration’s instance, has
the UUID “2f4157c0-0be0-49e6-a7be-c43d74e05b50”, and was used as an example. Applying the
presented SQL query, it is possible to gather each instance’s activity flow information:

• Activity name “Initialization”, presented in Table 3.1, is a reserved activity name and activity
type, with the hard-coded id “e211a116-cb8b-44e7-a052-0de295aa0001” (cf. lines 16 and 21).
This activity merely indicates the starting and ending of each orchestration’s instance.

• Naction, is a reserved and specific integration platform code for an event type, where code
1 represents start event types, and code 2 complete event types (cf. lines 3, 9, 17 and 22).
InternalSequence represents each activity’s placement in the instance’s activity flow.

• All start event type activities are selected (cf. lines 3 to 8). Each activity’s begin timestamp
is selected as the activity’s timestamp, and nAction is hard-coded to 1. Only activities from
the selected orchestration’s instance, which must not be in execution, are selected (cf. lines
39 and 40).

• All complete event type activities are selected (cf. lines 9 to 14). Each activity’s end timestamp
is selected as the activity’s timestamp, and nAction is hard-coded to 2.

• Reserved “Initialization” activity is added with both nAction values (cf. lines 16 to 19 and 21
to 23). Orchestration’s instance’s start time and end time are selected as both timestamps,
start and complete’s, and last InternalSequence is calculated (cf. lines 24 to 38).

• Reserved instruction ids with the UUID “00000000-0000-0000-0000-000000000000” are re-
moved (cf. line 42).

• Activities are ordered according to an internal sequence that complies with their timestamps
(cf. line 43).

27

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

1. SELECT t.uidServiceInstanceId as sid, t.vtInstructionId as iid, t.nAction as nact, t.dtTimeStamp as ts
2. FROM dbo.dtav_ServiceFacts sf WITH (READPAST), (
3. SELECT dt.uidServiceInstanceId, dt.vtInstructionId, 1 as nAction, dt.dtBeginTimeStamp as dtTimeStamp,
4. dt.nServiceSequence, dt.nBeginInternalSequence as nInternalSequence
5. FROM dta_ServiceInstances s JOIN dta_DebugTrace dt WITH (READPAST)
6. ON dt.uidServiceInstanceId = s.uidServiceInstanceId
7. AND dt.nServiceSequence = 0 WHERE s.uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
8. UNION ALL
9. SELECT dt.uidServiceInstanceId, dt.vtInstructionId, 2 as nAction, dt.dtEndTimeStamp as dtTimeStamp,
10. dt.nServiceSequence, dt.nEndInternalSequence as nInternalSequence
11. FROM dta_ServiceInstances s JOIN dta_DebugTrace dt WITH (READPAST)
12. ON dt.uidServiceInstanceId = s.uidServiceInstanceId
13. AND dt.nServiceSequence = 0 AND (dtEndTimeStamp IS NOT NULL)
14. WHERE s.uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
15. UNION ALL
16. SELECT TOP 1 s.uidServiceInstanceId, ’e211a116-cb8b-44e7-a052-0de295aa0001’ as vtInstructionId,
17. 1 as nAction, s.dtStartTime as dtTimeStamp, 1 as nServiceSequence, 1 as nInternalSequence
18. FROM dta_ServiceInstances s
19. WHERE s.uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
20. UNION ALL
21. SELECT TOP 1 s.uidServiceInstanceId, ’e211a116-cb8b-44e7-a052-0de295aa0001’ as vtInstructionId,
22. 2 as nAction, s.dtEndTime as dtTimeStamp, 1 as nServiceSequence, t2.nInternalSequence
23. FROM dta_ServiceInstances s, (
24. SELECT MAX(t.nInternalSequence) + 1 as nInternalSequence,
25. ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’ as uidServiceInstanceId
26. FROM (
27. SELECT MAX(nBeginInternalSequence) as nInternalSequence
28. FROM dta_DebugTrace
29. WHERE uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
30. AND nServiceSequence = 0
31. UNION ALL
32. SELECT MAX(nEndInternalSequence) as nInternalSequence
33. FROM dta_DebugTrace
34. WHERE uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
35. AND nServiceSequence = 0
36. UNION ALL
37. SELECT 1 as nInternalSequence) as t
38.) as t2
39. WHERE s.uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
40. AND s.dtEndTime IS NOT NULL AND s.uidServiceInstanceId = t2.uidServiceInstanceId) as t
41. WHERE sf.[ServiceInstance/InstanceID] = t.uidServiceInstanceId
42. AND t.vtInstructionId != ’00000000-0000-0000-0000-000000000000’
43. ORDER BY [ServiceInstance/StartTime], t.uidServiceInstanceId, t.nInternalSequence

Figure 4.3: Service orchestration’s instance information retrieval in Microsoft Biztalk integration
platform

Table 4.1 shows the orchestration’s instance information gathered using the SQL query presented
in Figure 4.3.

Instance ID Instruction ID Event Type Timestamp
2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 E211A116-CB8B-44E7-A052-0DE295AA0001 1 2009-10-28 19:40:33.730

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 DBE654A3-1E90-48E1-B616-50E7B7602ACC 1 2009-10-28 19:40:33.730

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 DBE654A3-1E90-48E1-B616-50E7B7602ACC 2 2009-10-28 19:40:33.730

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 977695E2-DF0D-49F0-8B7B-E39885805505 1 2009-10-28 19:40:33.730

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 C7575D71-7E30-462B-8E10-87EC51E74D9D 1 2009-10-28 19:40:33.730

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 C7575D71-7E30-462B-8E10-87EC51E74D9D 2 2009-10-28 19:40:34.043

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 64E9C10C-B1AF-4573-A2F4-8E41C69A7777 1 2009-10-28 19:40:34.043

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 64E9C10C-B1AF-4573-A2F4-8E41C69A7777 2 2009-10-28 19:40:34.090

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 977695E2-DF0D-49F0-8B7B-E39885805505 2 2009-10-28 19:40:34.090

2F4157C0-0BE0-49E6-A7BE-C43D74E05B50 E211A116-CB8B-44E7-A052-0DE295AA0001 2 2009-10-28 19:40:34.090

Table 4.1: Service orchestration’s instance information in Microsoft Biztalk integration platform

Instruction ids are present with their specific event type codes and timestamps. As one should
expect, instance ids are identical. Subsequently, the log inspection phase is responsible to map

28

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

every instruction id with their corresponding activity names and types, translate specific event
type codes to standard transactional model labels, start and complete event types, and apply a
standard timestamp format.

Corresponding activity names and types are found using instance’s id and start time timestamp,
and version’s id and deployment timestamp information. Since each instance only belongs to one
orchestration version, using timestamps, both instance’s and version’s, will deliver the necessary
search granularity needed to discover related activity data. Figure 4.4 presents the SQL query used
to discover the corresponding activity names and types. UidServiceId identifies the orchestration’s

1. SELECT TOP 1 txtSymbol as os
2. FROM dta_ServiceSymbols sym, dta_ServiceInstances inst
3. WHERE sym.uidServiceId = ’3acc982d-b315-483b-111b-9cc65ce842ea’
4. AND inst.uidServiceInstanceId = ’2f4157c0-0be0-49e6-a7be-c43d74e05b50’
5. AND DATEDIFF(ss, sym.dtDeploymentTime, inst.dtStartTime) > 0
6. ORDER BY DATEDIFF(ss, sym.dtDeploymentTime, inst.dtStartTime) ASC

Figure 4.4: Service orchestration’s activity information discovery in Microsoft Biztalk integration
platform

version (cf. line 3); UidServiceInstanceId represents the same former orchestration’s instance id (cf.
line 4); Line 5 shows the mentioned search granularity, in the order of seconds.

A XML type document that includes all information regarding each activity name and type
is retrieved, as can be seen in Figure 4.5. Translation between instruction id, which is presented
in the document as ShapeID, and the corresponding activity name, shapeText, and activity type,
shapeType, is now easily accomplished. As one can observe, the document presents not only every
instruction id from Table 4.1, but also all activities that comprise the mined process model. Con-
sidering the orchestration’s activity information gathered, one can find that there is one activity,
“SendReqToERP”, that was not executed by the orchestration’s instance.

At this point, having discovered and mapped activity information, the log is finally human-
readable, with every essential information available. Table 4.2 shows the resulting pre-processed
event log after inspection.

Instance ID Activity Name Event Type Originator Timestamp
3 Initialization start Eclipse 2009-10-28T19:40:33.730
3 ReceiveRequest start Eclipse 2009-10-28T19:40:33.730
3 ReceiveRequest complete Eclipse 2009-10-28T19:40:33.730
3 CheckQuantity start Eclipse 2009-10-28T19:40:33.730
3 ConstructRequestDenied start Eclipse 2009-10-28T19:40:33.730
3 ConstructRequestDenied complete Eclipse 2009-10-28T19:40:34.43
3 SendReqDenied start Eclipse 2009-10-28T19:40:34.43
3 SendReqDenied complete Eclipse 2009-10-28T19:40:34.90
3 CheckQuantity complete Eclipse 2009-10-28T19:40:34.90
3 Initialization complete Eclipse 2009-10-28T19:40:34.90

Table 4.2: Pre-processed event log from the log inspection phase

When log inspection is successfully completed, event logs are built and ready to be aggregated.
Every event log must be “clean”, having only the relevant information identified in the log extraction
phase. This way, it will be possible to mine this data and also apply specific mining filters in the
following phase, log aggregation.

29

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

<XsymFile>
<ProcessFlow xmlns:om="http://schemas.microsoft.com/BizTalk/2003/DesignerData">

.......
<ShapeInfo>

<shapeType>ReceiveShape</shapeType>
<ShapeID>dbe654a3-1e90-48e1-b616-50e7b7602acc</ShapeID>
<ParentLink>ServiceBody_Statement</ParentLink>
<shapeText>ReceiveRequest</shapeText>
</children>

</ShapeInfo>
.......

<ShapeInfo>
<shapeType>DecisionShape</shapeType>
<ShapeID>977695e2-df0d-49f0-8b7b-e39885805505</ShapeID>
<ParentLink>ServiceBody_Statement</ParentLink>
<shapeText>CheckQuantity</shapeText>
<children>

.......
<ShapeInfo>

<shapeType>ConstructShape</shapeType>
<ShapeID>c7575d71-7e30-462b-8e10-87ec51e74d9d</ShapeID>
<ParentLink>ComplexStatement_Statement</ParentLink>
<shapeText>ConstructRequestDenied</shapeText>
<children>

.......
</children>

</ShapeInfo>
<ShapeInfo>

<shapeType>SendShape</shapeType>
<ShapeID>64e9c10c-b1af-4573-a2f4-8e41c69a7777</ShapeID>
<ParentLink>ComplexStatement_Statement</ParentLink>
<shapeText>SendReqDenied</shapeText>
</children>

</ShapeInfo>
.......

<ShapeInfo>
<shapeType>SendShape</shapeType>
<ShapeID>ce56e77d-119e-4693-b7dc-889ecc98d811</ShapeID>
<ParentLink>ComplexStatement_Statement</ParentLink>
<shapeText>SendReqToERP</shapeText>
<children />

</ShapeInfo>
</children>
</ShapeInfo>

.......
</ProcessFlow>

.......
</XsymFile>

Figure 4.5: Service orchestration’s activity information in Microsoft Biztalk integration platform

4.4 Log Aggregation

With the pre-processed orchestration’s event log at hand, having all process instances and inher-
ent activities ordered, it will be easier to retrieve the process’ ordering of tasks, and model the
deployed and executed logical flow. Log aggregation enables the discovery of the orchestration’s
run-time behaviour design model. Other process mining results can be achieved after this phase,
like performance issues, conformance analysis, or model extensions.

The main ideas beneath the log aggregation phase are to bring together each instance’s activ-
ity and communication information, either from every instance found in the previous phase or by
filtering chosen instances, and to build a dependency frequency table that models the mined orches-
tration’s control-flow perspective. Aggregated instance lists may be refined using three different
filters, namely:

1. Orchestration version.

30

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

2. Instance timestamp.

3. Instance id.

Instance activity ordering information retrieved from the pre-processed event log can then be
mapped and placed in a MXML log file, or mined, so as to build a dependency frequency table that
describes the orchestration’s model.

4.4.1 MXML Log File

The purpose of MXML log files is to create a common log format for process mining techniques,
which enables information and log integration from heterogeneous sources. As mentioned before,
MXML is a standard XML format that is used to import or export event logs from or to several
distinct systems, like the ProM framework. In Section 3.1, the MXML format was presented and
some of its element mappings explained. Considering every relevant data found about orchestrations
instances presented in the log extraction phase, MXML log files can be produced using the following
standard mappings:

• Process id, which indicates the orchestration’s identification, or name. It is possible to place
several service orchestrations in one MXML log file.

• ProcessInstance id, representing each orchestration’s instance.

• WorkflowModelElement, which maps the activity name.

• EventType, maps the transactional model of each event. As referred before, only start and
complete event types are used.

• Timestamp, represents the execution time of each activity in every instance.

• Originator, the activity performer. The server name is used, as mentioned before, since it
is important to know, in an interoperability perspective, which server node executed each
service and activity.

Figure 4.6 shows the MXML log file generated using the pre-processed event log from Table 4.2. For
simplification reasons only, the presented log file only has one instance from the service orchestration
introduced in Section 2.3. Although the MXML log file format was initially designed to store
“standard” process mining information, it can easily accommodate more specific data. The Data
element presented in the standard MXML log format may be used to achieve this goal. Considering
service orchestrations, other important information should also be stored in such a log file, even
considering that for the moment, process mining frameworks, like ProM, are not able to understand
such orchestration’s specific knowledge, namely:

• Activity type, or BPEL activity type, important when performing phase 5, visualization;

• Orchestration version, enabling process growth analysis and improved design model compre-
hension; and

• Communication ports, helpful when defining the service network architecture and interoper-
ability,

31

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

<?xml version="1.0" encoding="UTF-8"?>
<!–MXML version 1.0–>
<!–This is a process enactment event log created by OrchInsider to be analysed by ProM.–>
<!–ProM is the process mining framework. It can be freely obtained at http://www.processmining.org/.–>
<WorkflowLog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://is.tm.tue.nl/research/processmining/WorkflowLog.xsd"
description="OrchInsider log">

<Source program="OrchInsider" />
<Process id="EApp1Orchestrations.EApp1Process" description="EApp1Orchestrations.EApp1Process">

<ProcessInstance id="2f4157c0-0be0-49e6-a7be-c43d74e05b50" description="Instructions number: 10">
<AuditTrailEntry>

<WorkflowModelElement>Initialization</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2009-10-28T19:40:33.730</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>ReceiveRequest</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2009-10-28T19:40:33.730</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>ReceiveRequest</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2009-10-28T19:40:33.730</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>CheckQuantity</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2009-10-28T19:40:33.730</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>ConstructRequestDenied</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2009-10-28T19:40:33.730</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>ConstructRequestDenied</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2009-10-28T19:40:34.43</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>SendReqDenied</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2009-10-28T19:40:34.43</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>SendReqDenied</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2009-10-28T19:40:34.90</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>CheckQuantity</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2009-10-28T19:40:34.90</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>Initialization</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2009-10-28T19:40:34.90</Timestamp>
<Originator>Eclipse</Originator>

</AuditTrailEntry>
</ProcessInstance>

</Process>
</WorkflowLog>

Figure 4.6: Log aggregation’s generated MXML log file

32

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

4.4.2 Process Model

Although creating the MXML log file is very important, because it allows for pre-processed event
log file storage and further analysis in distinct process mining platforms, the main goal of the log
aggregation phase is to extract the design model of the mined orchestration’s control-flow perspec-
tive. This is accomplished by mining every orchestration’s instance’s activity ordering information
retrieved from the pre-processed event log, and building an activities’ dependency frequency table
that represents the ordering of tasks, the process’ logical flow.

Table 4.3 shows the dependency frequency table discovered from the deployed orchestration
presented in Section 2.3, where each row represents an edge or transition, connecting one activity
to the other7. One interesting thing to notice is that the event type information is also present.

Activity Name A Event Type A Activity Name B Event Type B Frequency
Initialization Start ReceiveRequest Start 3

ReceiveRequest Start ReceiveRequest Complete 3
ReceiveRequest Complete CheckQuantity Start 3
CheckQuantity Start SendReqToERP Start 2
CheckQuantity Start ConstructRequestDenied Start 1
SendReqToERP Start SendReqToERP Complete 2
SendReqToERP Complete CheckQuantity Complete 2
CheckQuantity Complete Initialization Complete 3

ConstructRequestDenied Start ConstructRequestDenied Complete 1
ConstructRequestDenied Complete SendReqDenied Start 1

SendReqDenied Start SendReqDenied Complete 1
SendReqDenied Complete Intitialization Complete 1

Table 4.3: Log aggregation’s dependency frequency table

Such knowledge is very important, not only it allows for concurrency or parallelism detection,
when one activity is executed before another one ends; this is the case of the “CheckQuantity”
and “SendReqToERP” activities; “SendReqToERP” is executed after “CheckQuantity” starts and
before the latter ends; but also because with start and complete event types it is also possible
to gather each activity’s execution performance data. Finally, there is a frequency column that
gives the cardinality of each transition, namely the number of times an edge was traversed. The
former transition, connecting activities “CheckQuantity” and “SendReqToERP”, has a frequency
value of two, meaning that after mining all executed instances from the deployed orchestration, this
transition was fired or triggered two times.

The dependency frequency table has relevant information to describe and model the mined or-
chestration’s control-flow perspective, and is the starting point for some of the other phases involv-
ing the analysis and discovery of service orchestrations, such as model visualization, performance
analysis and conformance analysis.

4.5 ProM Analysis

Using the MXML log file created in the former log aggregation phase, ProM can be used to ap-
ply process mining techniques to the orchestration’s event log. However, as mentioned before in

7Activity A is executed and followed by activity B.

33

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

Sections 3.4 and 4.4.1, it will not be possible to answer some of the questions concerning service
orchestrations, namely:

2. How was the service orchestration built? How many versions does it have? Can one see its
growth along time?

6. How does the service orchestration’s run-time behaviour conform with the previously designed
model?

7. What are the external service communications?

8. What is the service architecture in the organization?

The MXML standard format does not accommodate more specific knowledge about service
orchestrations, like:

• Activity type.

• Orchestration version.

• Communication ports.

Even if this information was present in the MXML log file, either in the Data element or in a
proposed augment of the format, ProM’s mining techniques would not be able to deal with such
knowledge. Nevertheless, the orchestration’s event log placed in the MXML log file is seen by the
ProM application as a process, and, for that matter, ProM can be used to analyse service orches-
trations, from every perspective. Figure 4.7 shows ProM’s control-flow analysis of the deployed
orchestration presented in Section 2.3. The discovery heuristic miner plugin was utilized and the
orchestration’s process model is presented. Also, a conversion from the heuristic net to a Petri net
is shown, using a conversion plugin.

Figure 4.7: ProM’s control-flow analysis of a service orchestration’s MXML log file

34

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

Although some of the advantages of the model visualization phase introduced in the next section
are not present using the ProM framework, due to the specificity of service orchestrations, ProM
can still be used to discover the process model and other performance issues.

4.6 Model Visualization

The next phase in the proposed ADSO mining methodology aims to visualize and interpret results,
namely the complete service orchestration’s control-flow. Model visualization presents process min-
ing results so it is possible to gain clear insight of the process model, thus helping to answer
questions:

1. How is the service orchestration modelled? What are the business rules? Are they coherent
and executed correctly?

2. How was the service orchestration developed? How many versions does it have? Can one see
its growth along time?

To fulfil these needs, the mined orchestration’s model is visualized by means of a dependency
graph. With the dependency frequency table from the log aggregation phase, this task can easily
be accomplished, since every activity and edge is present.

Figure 4.8 shows the orchestration’s dependency graph built using the previous dependency
frequency table (cf. Table 4.3). Each edge’s frequency is displayed and non-concurrent8 activities
are merged into one single activity. For instance, the “ReceiveRequest” start event activity is
immediately followed by the “ReceiveRequest” complete event activity. In such cases, for a better
understanding of the model, improving model visualization, these activities are merged into a
single activity and the distinction between start and complete event types is no longer present.
As one can easily observe, “ReceiveRequest”, “SendReqToERP”, “ConstructRequestDenied” and
“SendReqDenied” become single activities whereas the “CheckQuantity” activity remains with start
and complete event types distinction.

3Initialization
Start

ReceiveReq
Start

ReceiveReq
Complete

ReceiveRequest

SendReqToERP
Start

SendReqToERP
Complete

SendReqToERP

CheckQuantity
Start

3

ConstReqDen
Start

ConstReqDen
Complete

ConstructRequestDenied

SendReqDenied
Start

SendReqDenied
Complete

SendRequestDenied

CheckQuantity
Complete

Initialization
Complete

1

1

2
2

1

3

Figure 4.8: Model dependency graph

Although the dependency graph models the orchestration’s control-flow, it is also important to
enrich such model visualization with other orchestration-oriented information, in order to provide
a more complete view of the orchestration’s business logic.

8Activities that start and complete their execution without any other activity being started in between.

35

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

As mentioned in the log extraction phase, activity type and version information are very useful
when designing the process model, as they enable improved design model understandability. Table
4.4 shows this information, retrieved from every activity present in the log aggregation’s dependency
frequency table from Section 4.4.2. One thing to notice, however, is that, in this case, all activities
belong to the same orchestration version, since there is only one version available.

Activity Name Activity Type Frequency Scope Version/s
Initialization Orchestration 3 - 1

ReceiveRequest ReceiveShape 3 - 1
CheckQuantity DecisionShape 3 - 1
SendReqToERP SendShape 2 - 1

ConstructRequestDenied ConstructShape 1 - 1
SendReqDenied SendShape 1 - 1

Table 4.4: Orchestration-oriented activity information

1. Activity type

(a) Identifying specific BPEL standard activities is helpful when designing the process model.
BPEL activities like the <if> element, which can be found in Table 4.4 as the Decision-
Shape type activity, whenever present, can be drawn in a similar BPEL standard fashion
enabling better comprehension of the model.

(b) One relevant activity type is the scope type activity. When present, not only it helps
assuring activity naming consistency, as mentioned before, but is also a powerful tool
that can help to improve model visualization and comprehension. Since scopes are a
collection of activities, each scope can be seen as a macro activity. Identifying each
activity’s scope and placing scope information in the design model, can also enhance
model readability.

2. Version information The development of the orchestration itself can be analysed using
version information. Each activity can belong to one or several versions, so it is of utmost
importance to keep track of this information. When the orchestration’s model is designed
and developed during the course of time, changes can be made and made over, some activities
may even disappear and new ones introduced, so, with this information at hand, it will be
possible to visualize and compare different process model versions, and understand how the
orchestration was built along time.

Figure 4.9 presents the model visualization phase enriched with orchestration-oriented information.
Since the orchestration modelled is the one from Section 2.3, it is easy to find some similarities
when comparing Figure 2.5 with Figure 4.9. Activities are pictured as rounded boxes and business
decision rules as diamond boxes. Analysing Table 4.4, one can see that the “CheckQuantity” activity
is a DecisionShape type activity, and therefore a decision rule, or an <if> BPEL activity. This
model depicts every behaviour “learned” from the event logs shown in Tables 3.1 and 4.2.

36

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

Figure 4.9: Model visualization phase with orchestration-oriented information

The visualization phase presents not only the orchestration’s design model, as an activity depen-
dency graph, but can also be enriched with more specific orchestration-oriented information, like
standard BPEL activity design, scope “macro” activities, version analysis, and other information
regarding performance analysis, such as activity and edge frequency.

4.7 Performance Analysis

Model visualization gives an overall idea and a clear insight of the executed orchestration’s design
model, the orchestration’s control-flow, but this knowledge must be enhanced with orthogonal
process mining results, like performance analysis. Such results may even enrich the orchestration’s
design model, allowing for easier and swift understandability of the process’ performance, but they
are also important as they help to seize control over the executed process, delivering answers to the
following questions:

3. What are the most frequent paths and their execution probabilities along the service orches-
tration?

4. What is the average/maximum/minimum performance time for each activity and for the
whole orchestration? And for external services, whenever present?

5. Is the process model efficient and adequate for its purpose? Are there any bottlenecks? What
are the critical paths?

These are important questions that must be answered, and performance analysis attains all the
required information to grasp this knowledge.

As mentioned in the log extraction phase, instance and activity timestamps are retrieved from
the history log, and afterwards mapped to a standard format in the log inspection phase. Having

37

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

each activity’s timestamps from every orchestration’s instance, and event type information, start
and complete’s, one can calculate each activity’s maximum, minimum, and average execution times,
as presented in Table 4.5. Also, activity frequency is retrieved, indicating the number of times each
activity was performed.

Moreover, one can observe that activity execution times are quite fast, in the order of millisec-
onds, as mentioned before in Section 3.1. This relates to the fact that in service orchestrations,
activities are mainly process logic execution and service invocation activities. However, when ex-
ternal services are invoked within the orchestration, activities that relate to service invocation may
have higher execution times, since they are waiting for an answer from the external service.

Activity Name Activity Type Frequency Max. Time Min. Time Avg. Time
Initialization Orchestration 3 00:00:00.3600000 00:00:00 00:00:00.1800000

ReceiveRequest ReceiveShape 3 00:00:00.2160000 00:00:00 00:00:00.1080000

CheckQuantity DecisionShape 3 00:00:00.3600000 00:00:00 00:00:00.1800000

SendReqToERP SendShape 2 00:00:00.0300000 00:00:00 00:00:00.0150000

ConstructRequestDenied ConstructShape 1 00:00:00.3130000 00:00:00.3130000 00:00:00.3130000

SendReqDenied SendShape 1 00:00:00.0470000 00:00:00.0470000 00:00:00.0470000

Table 4.5: Service orchestration’s activity performance information

With activity performance information, knowing each activity’s execution time performance and
the whole orchestration’s, which is betokened by the “Initialization” activity, one can educe several
performance indicators:

• Internal activities performance indicators, such as maximum, minimum and average
internal execution times.

• External services performance indicators, such as maximum, minimum and average
external execution times.

• Bottleneck analysis, whenever an activity performance indicator, internal or external, sur-
passes a given threshold.

Since orchestrations are recursive compositions of services, there is a strong possibility that some
external services are invoked. When a service orchestration calls an external service and expects an
answer9, some of the orchestration’s instance’s execution time is consumed “outside” the orches-
tration. For that matter, the whole internal execution time may not agree with the sum of each
activity’s execution time, either maximum, minimum or average. This occurs when ReceiveShape10

type activities are present. In such cases, since these activities are waiting to receive an answer
from an external service, the orchestration’s execution time is being added with external service
execution time. However, there is one exception that must be taken into account, which is the first
activity, other than the “initialization” activity, present in the orchestration. Such first activity is
a ReceiveShape type activity that instantiates and triggers the orchestration’s execution upon mes-
sage receival. When this is the case, it is clearly not an external service answer, since no service was
invoked. For that matter, no external service execution time is considered. So, to really apprehend

9Request-response communication ports.
10Equivalent to a <receive> BPEL activity.

38

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

performance indicators, it is important to grasp, not only the orchestration’s internal performance
indicators, but also the orchestration’s external performance indicators.

Other than time performance, edge and activity frequency information is also of use. Activ-
ity frequency values presented in Table 4.5, and edge frequency values displayed in Table 4.3, in
conjunction with the internal activities performance indicators, support:

• Critical paths discovery, when high frequency paths containing bottleneck activities occur.

• Path analysis, concerning:

– Path frequency, either path cardinality or probabilistic analysis.

– Start and end activities, which determine every first executed activity from the orches-
tration, and every activity that is lastly executed. Considering again Microsoft Biztalk
integration platform, it is enough to simply retrieve every edge that contains the “Initial-
ization” activity, since it clearly indicates the starting and ending of each orchestration’s
instance. Table 4.6 presents start and end activities attained from the dependency fre-
quency table (cf. Table 4.3). This analysis helps to determine the status of orchestration
instances, namely completed or terminated instances. When an orchestration instance
ends with a non-predicted end activity, this means that such instance was terminated
and did not complete its entire flow.

Start Activities Frequency End Activities Frequency
ReceiveRequest 3 CheckQuantity 3

Table 4.6: Service orchestration’s start and end activities

– Paths number. Path evaluation calculates the number of paths between any two given
activities. This is achieved through a breadth-first search (BFS)11 with loop detection,
which explores the dependency graph (cf. Figure 4.8).

With performance analysis it is possible to unveil “hidden” knowledge about deployed orchestrations
and their run-time behaviours, namely performance issues. This information may be used to enrich
the design model visualization, and achieve higher control over the orchestration’s process, really
understanding how, when and why the orchestration is executed the way it is.

4.8 Conformance analysis

Having discovered the service orchestration’s execution model and other performance issues, it is
now possible to compare such retrieved model with the initially designed and modelled process flow,
answering question:

6. How does the service orchestration’s run-time behaviour conform with the previously designed
model?

11In graph theory, a breadth-first search (BFS) is a graph search algorithm that begins at the root node and
explores all the neighboring nodes. Then for each of those neighboring nearest nodes, it explores their unexplored
neighbor nodes, and so on, until it finds the goal.

39

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

Conformance checking, also referred to as conformance analysis, aims to detect and quantify
any inconsistencies between the orchestration’s projected design model and the learned run-time
behaviour of the deployed orchestration. One important prerequisite for conformance analysis is
that every activity in the design model must be associated, or mapped, with the equivalent activity,
if it exists, in the event log. There must be a simple one to one mapping, where each process model
activity is associated with exactly only one event log activity, meaning that no other activity in
the model can match the same activity in the event log. When mapping equivalent activities, the
following concerns may occur:

1. Duplicate activities Activities may appear more than once in the model. Even when
name consistency is granted (cf. Section 4.3), “duplicate” activities are present. As one can
observe, in the model dependency graph from Figure 4.8, there are two activities with the
same name, “CheckQuantity”. The only information that can be used to differentiate them is
their corresponding event types. For that reason, activity mapping must include event type
information.

2. Invisible activities Some activities were simply not executed, and therefore are not present
in the event log. Hence, certain steps in the orchestration’s process model may not be ob-
servable.

3. Orchestration model version Activities may be removed, changed from position, or re-
named from time to time. It is crucial to grant that orchestration versioning is correctly
performed, so event logs and their activities are mapped correctly with their correspondent
orchestration version.

Considering once more Microsoft Biztalk integration platform, each designed orchestration creates
an “.odx” file that contains all the orchestration’s operations, artefacts, and workflow logic. With
such odx file, it is possible to parse the entire designed process model (cf. Section 4.4.2), although in
this case, instance aggregation is not required. The dependency frequency table is established, even
if every edge has a frequency value of one. One important aspect when parsing the orchestration’s
model from the odx file, is the name consistency issue, which relates with activity mapping. Activity
name consistency must be granted before activity mapping, hence both models, either mined or
parsed models12, must be built using the same activity labelling option, as discussed in the log
inspection phase. Afterwards, the activity information table (cf. Table 4.4) is created, so it is
possible to visualize and differentiate both models, the mined and the parsed model.

Conformance can be analysed from two different ways:

• Instance conformance: measures fitness between event logs and parsed models.

• Model conformance: measures and quantifies how much behaviour allowed by the designed
or parsed model is never used by the mined model, thus behavioural appropriateness.

12The initially designed and modelled process is referred to as parsed model.

40

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

4.8.1 Instance Conformance

The idea beneath instance conformance, or fitness measurement, is to replay every edge from
every instance’s event log in the parsed model, and measure mismatches, and correctly triggered
transitions. The following instance conformance metric is adapted from the fitness metric introduced
in (Rozinat and van der Aalst, 2008).

Fitness Let #E be the number of edges present in each instance. Let #C be the number of
correctly triggered transitions. Let #M be the number of mismatches. Let #I be the number of
instances. For each instance (1 ≤ i ≤ #I), the instance fitness is equal to #C

#E and #M is equal to
#E - #C. So, the event log fitness metric f is defined as follows:

f = 1
#I

#I∑
i=1

#C
#E

The replay of each instance’s event log starts with the first transition, or edge, and afterwards, all
transitions belonging to the event log are triggered one after another. During the replay, correctly
triggered edges are counted until there are no more transitions in the event log.

To illustrate this rationale, Figure 4.10 depicts all transitions triggered during event log replay
using instance number one from Table 3.1 and the previous dependency graph (cf. Figure 4.8).
For easier understandability of the process, all activities, including their corresponding event types,
were mapped to letters A, B, C and so forth, as shown in Table 4.7.

Activity Name Event Type Label
Initialization start A
Initialization complete B

ReceiveRequest start C
ReceiveRequest complete D
CheckQuantity start E
CheckQuantity complete F
SendReqToERP start G
SendReqToER complete H

ConstructRequestDenied start I
ConstructRequestDenied complete J

SendRequestDenied start K
SendRequestDenied complete L

Table 4.7: Activity mapping using event type information

All transitions were triggered correctly, as one should expect, yet, in such cases as orchestrations
that did not complete their entire flow, either by an error, or because they were terminated by the
user, the fitness metric presents itself as a useful detection tool.

41

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(a) Initialization (Start) > ReceiveRequest (Start)

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(b) ReceiveRequest (Start) > ReceiveRequest (Complete)

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(c) ReceiveRequest (Complete) > CheckQuantity (Start)

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(d) CheckQuantity (Start) > SendReqToERP (Start)

Initialization

Start

ReceiveReqt

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(e) SendReqToERP (Start) > SendReqToERP (Complete)

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB

2 ACDEIJKLFB

3 ACDEIJKLFB

(f) SendReqToERP (Complete) > CheckQuantity (Complete)

Initialization

Start

ReceiveReq

Start

ReceiveReq

Complete

CheckQty

Start

SendReqTo

ERP

Start

ConstReq

Denied

Start

SendReqTo

ERP

Complete

ConstReq

Denied

Complete

SendReq

Denied

Start

SendReq

Denied

Complete

CheckQty

Complete

Initialization

Complete

Instance Log Trace

1 ACDEGHFB
2 ACDEIJKLFB

3 ACDEIJKLFB

(g) CheckQuantity (Complete) > Initialization (Complete)

Figure 4.10: Log replay during instance conformance checking

42

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

4.8.2 Model Conformance

Instance conformance does not use aggregated event logs. Instead, it works with every orchestra-
tion’s instance independently and calculates the overall fitness metric. On the other hand, model
conformance works with both orchestration models, the mined process model and the parsed model
(cf. Section 4.4.2). Model conformance is interested in the complete workflow, or orchestration’s be-
haviour, and tries to quantify the behavioural appropriateness, how much of the behaviour present
in the parsed orchestration’s model is availed by the mined orchestration’s model. The proce-
dure behind model conformance is to traverse every edge from the parsed orchestration’s model,
and replay it in the mined orchestration’s model, measuring correctly triggered transitions and mis-
matches. The following model conformance metric is adapted from the behavioural appropriateness
metric introduced in (Rozinat and van der Aalst, 2008).

Behavioural appropriateness Let #E be the number of edges present in the parsed model.
Let #C be the number of correctly traversed edges. Let #B be the number of edges learned in the
mined model. For each edge (1 ≤ i ≤ #B), the behavioural metric Bi is either one, if the edge is
present in the parsed model, or zero, otherwise. The model behavioural appropriateness metric b
is defined by the following equation:

b = 1
#E

#E∑
i=1

Bi

Even when instances are fully compliant, the whole process model may not be. One should
always design a process as precisely as possible, but, on the other hand, transitions that do not occur
in the mined process model may be due to log incompleteness (cf. Section 3.1). Such behaviour
may even occur in the future, but is not currently recorded in the event log. Furthermore, the
designed model may be too generic and this way allowing for unwanted and unrealistic behaviour.
It is always up to the developer to analyse and differentiate such situations, in order to accomplish
a compromise between both realities.

Although conformance analysis was presented as being one of the last phases in the ADSO
mining methodology, it is an important fact that after the log aggregation phase, conformance
analysis can be useful to filter unwanted orchestration instances from evaluation. For instance,
if conformance checking is executed before the design model phase, some of the terminated and
problematic instances can be identified and, if so desires, the developer or the analyst can select
only complete instances to mine the orchestration’s design model. Also, conformance checking
allows for an overall starting point which enables improved performance analysis, since a global
view of the mined orchestration is presented, and mining decisions can be made with some previous
knowledge.

4.9 Service Network Architecture

Service orchestrations are recursive composition of services, and enable service and process collab-
oration. For this reason, it is important to understand which external services are invoked during
orchestration execution. The service network architecture phase aims to analyse the orchestration’s
communication ports, and answer questions:

43

Analysis and Discovery of Service Orchestrations 4. Mining Service Orchestrations

7. What are the external service communications?

8. What is the service architecture in the organization?

Communication ports are important aspects of orchestrations, as they enable service re-usage
and therefore SOA-based services. After the log aggregation phase, each port name, direction and
timestamp information retrieved from every orchestration’s instance gives enough information to
characterize communications. Port direction information, namely send and receive, is useful to
detect port types, such as:

• Request-only port types, when ports are only invoked one way, either sending or receiving
messages.

• Request-response port types, when ports are invoked both ways, sending and receiving mes-
sages.

With this information at hand, it is possible to define the service network architecture, depicting
service interoperability. Even so, this network would be centralized in the selected orchestration,
since there is only communication information available from such orchestration. A more interesting
approach would be to design a distributed orchestration network (cf. Section 2.4), a choreography.
It would lead to a new mining perspective (cf. Section 3.2), an interoperability or choreography
perspective. This brings forth two new issues;

• How to gather every orchestration’s log in a joint event log.

• How to link every instance with every communication message.

The first issue could be solved using some kind of a log integration platform, but even so, every
orchestration’s log must be aggregated in such platform. The second issue remains as an investi-
gation opportunity. In (Aalst and Verbeek, 2008) this challenge is somewhat introduced, but with
the purpose of correlating events with process instances. The presented ADSO methodology solves
this problem and brings forward this other similar problem, how to link messages with execution
instances. One idea would be to use timestamps, but this brings another problem, time synchronism
between execution engines. All execution engines should be synchronized with exactly the same
time, or use some kind of a time server. However, correlation seems to be the best way to address
this problem.

4.10 Conclusion

A service orchestrations’ mining methodology, ADSO, was introduced in this chapter, with all the
main steps involving the analysis and discovery of service orchestrations discussed and scrutinized.
An orchestration developed with Microsoft Biztalk integration platform was used as an example to
substantiate the proposed methodology. In Chapter 6, the ADSO methodology will be validated
and tested with more complex service orchestrations. The proposed service orchestrations’ mining
methodology has delivered some relevant information that has brought into the light some other
aspects of orchestration analysis, namely service communications delivering distributed services, or
choreographies. These are unsolved issues and present themselves as research opportunities. In
the following chapter, OrchInsider, a service orchestrations’ mining application that applies the
presented solution in the same integration platform, will be introduced.

44

Chapter 5

OrchInsider: a Service
Orchestrations’ Mining
Application

A software application, henceforth referred to as OrchInsider, was designed to implement the anal-
ysis and discovery of service orchestrations (ADSO) mining methodology1, based on Microsoft
Biztalk integration server. Although it was initially conceived to support Biztalk, OrchInsider can
easily be adapted to support other integration platforms, only requiring the capability of extracting
event logs from other systems. This can be accomplished by adding a software “plugin”, or by
using the MXML data log format depicted in Figure 3.2. Also, OrchInsider can work together
with ProM, since it can export pre-processed event log files to MXML. Nevertheless, some of the
analyses performed by OrchInsider are not yet provided by the ProM framework (cf. Sections 4.4.1
and 4.5), such as version analysis, communication analysis or even conformance2 analysis.

OrchInsider has been developed to analyse and discover the following aspects of deployed service
orchestrations:

• Version Analysis.

• Communication Ports.

• Design Model.

• Performance Analysis.

• Bottleneck Analysis.

• Path Analysis.

• Conformance Analysis.

OrchInsider is a context-based application, where every information and command can only be
displayed and executed according to the current step in the ADSO mining methodology3. This

1ADSO - Analysis and Discovery of Service Orchestrations mining methodology, was introduced in Chapter 4.
2ProM’s conformance plugins can only be applied if parsed service orchestration models are exported.
3For instance, design model can only be attained after log aggregation.

45

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

is illustrated in Figure 5.1, where instance information from the deployed orchestration presented
in Section 2.3 is displayed. Also, it is useful and possible to observe the orchestration’s first and

Figure 5.1: Deployed orchestrations and instance information, using OrchInsider

last execution dates, and versions number. When mining service orchestrations, this information
comes at hand, since it provides the analyst with appropriate knowledge regarding the usage of
filters, improving analysis control. Several options can be selected using OrchInsider. For instance,
one could define a specific list of instances to analyse, or select instances between start and end
dates, and even target results by specifying which version/s to analyse. The status info displayed
in Figure 5.1 shows a summary of relevant information about the loaded orchestration, along with
some of the current application options. The following sections will address the utility of these and
other options combined with the presented application features with the purpose of seizing control
and monitor orchestration execution.

5.1 Versioning

Version analysis is very useful due to the nature of orchestrations (cf. Sections 3.2 and 4.6). Using
version analysis, it is possible to observe how the orchestration’s logical model was developed and
evolved during the course of time, which decisions were made and made over, and use this informa-
tion to gather further knowledge about the life cycle of service orchestrations. It is also important
because it allows building the orchestration’s model accordingly, avoiding misinterpretation. If the
model is changed during time, some paths or activities may become unused or even “disappear”,
so it is of utmost importance to deal with this problem. Version analysis can be the key. However,
this kind of analysis is always user dependent, since it is the user’s or developer’s responsibility to
control and manage versioning.

46

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

OrchInsider displays information about each orchestration’s version, specifically every version’s
last deployment date, and allows for orchestration version analysis, since it can analyse every in-
stance and correlate it with the corresponding version. Using this information, it is possible to
design and recognize an orchestration model containing several different versions, therefore imme-
diately observing model differences along time.

Figure 5.2 presents a small part of the version analysis performed using SportTicket Online’s
buying process orchestration4. As can be seen, it is possible to easily detect version activities.

Figure 5.2: Version differences analysis, using OrchInsider

Latter version activities are marked green whereas former version activities appear in red. In this
case, one can observe that the activity “DaNumeroPassaporte” is somewhere in time discarded, and
presumably replaced by the new activity “VerificaPassaporteIdades”.

5.2 Communication Ports

OrchInsider delivers information about service communications, where each instance’s ports are
listed, along with;

• port name;

• port direction, send or receive; and

• port timestamps;

If a communication port is invoked several times during orchestration execution, such port will be
listed with different timestamps. With port direction and timestamp information, it is possible
to understand the orchestration’s communication behaviour, which is displayed in Figure 5.3, and
depict the service network architecture.

4SportTicket Online’s buying process orchestration will be discussed in the case study presented in Chapter 6.

47

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

Figure 5.3: Service orchestration’s external communications, using OrchInsider

Figure 5.3 shows the external service communications from the orchestration introduced in
Section 2.3, where it is possible to view each port with corresponding direction information5.

5.3 Design Model

Figure 4.9 already presented the mined design model from the selected orchestration. However,
as discussed in Sections 4.6 and 4.7, the process model can be enriched with other information
concerning performance analysis, like path traversing frequency or probability. Critical paths and
bottlenecks can also be depicted in a similar fashion. OrchInsider allows for model performance
analysis visualization. It is possible to configure and observe in the design model several performance
indexes and orchestration-oriented information, such as:

• Bottleneck activity visualization, or bottleneck probabilistic analysis, concerning activity ex-
ecution time, average, maximum or minimum. Bottleneck threshold value can also be con-
figured6. Bottleneck activity visualization highlights every activity whose execution time
surpasses the configured threshold7. Bottleneck probabilistic check is somewhat different,
since every activity is drawn with a gray tonality according to its execution time and related
to the orchestration’s execution time.

• Activity frequency probabilistic analysis, concerning the number of times each activity was
executed. Once more, activities are drawn with a gray tonality according to their execution
frequency, and related to the maximum activity execution frequency in the orchestration.

• Path frequency visualization, and path probabilistic analysis, concerning the number of times
each edge was traversed. Path frequency visualization displays every edge’s frequency number.
Path frequency probabilistic analysis relates to high traversed edges, since each edge’s width is
correlated to the edge’s frequency and the maximum edge frequency found in the orchestration.

5Port direction information is displayed using small non-filled dots that represent receive direction ports.
6Bottleneck threshold represents activity duration, either average, maximum or minimum, in seconds.
7Bottleneck activities appear in red.

48

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

If a bottleneck activity is present in a high frequency path, then the path may be considered
as a critical path.

• Standard BPEL8 activity design, where activities are drawn in a similar BPEL standard
fashion.

• Scope “macro” activity visualization, where scope information is depicted in the design model.
Every activity belonging to a specific scope is placed inside a blue square, representing the
scope area. Scope areas can be labeled with proper name identification.

Figure 5.4 displays the mined design model, enhanced with performance information, for the orches-
tration presented in Section 2.3. The retrieved and revealed model includes bottleneck probabilistic

Figure 5.4: Design model enhanced with performance analysis, using OrchInsider

analysis, path frequency visualization, and path probabilistic analysis. As one can easily observe, a
glance is almost enough to immediately perceive critical paths and bottlenecks, and most frequent
paths.

5.4 Performance Analysis

Using OrchInsider’s performance analysis features provides further knowledge about the mined
process behaviour. However, to properly adjust performance features with run-time performance
analysis, and due to the granularity of such features, a previous understanding of the modelled
process should exist, so even better results can be accomplished. Considering again the selected
orchestration from Section 2.3, which will be used as an example in the following sections, to
properly analyse bottleneck activities and critical paths, such previous process awareness empowers
the user to properly adjust bottleneck thresholds and correctly understand performance indicators.

8BPEL, namely WS-BPEL, was mentioned in Section 2.3.

49

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

OrchInsider displays activity performance indicators, orchestration performance information and
allows for bottleneck configuration and analysis, as can be observed in Figure 5.5.

Figure 5.5: Performance analysis with OrchInsider

Analysing the presented results, one can conclude that:

• No execution time was spent outside the orchestration, which can be confirmed with the
previous communication analysis, since there are not any request-response communication
ports.

• Choosing a bottleneck threshold of 0.2 seconds, which seems to a be a reasonable value consid-
ering Table 4.5, and selecting average time as the bottleneck analysis performance indicator
(cf. Section 4.7), one can observe that there was one activity, “ConstructRequestDenied”, that
surpassed the configured threshold value. This can also be confirmed by observing Figure 5.4,
where bottleneck activity probabilistic analysis is displayed.

• Even recognizing that there are few orchestration instances presented, the path containing
the “ConstructRequestDenied” activity may be considered a critical path. Figure 5.4 is also
useful to reinforce this idea, and path analysis can be used to clarify this issue.

Performance analysis ensures a closer look at the orchestration’s run-time behaviour, allowing for
model performance quantification and this way improving process comprehension.

Path analysis, is another feature that can help to clarify and better understand the orchestra-
tion’s performance. Using path analysis, it is possible for a developer or an analyst to measure and
quantify the orchestration’s behaviour in more detail. Let’s imagine that, when the orchestration
was initially developed, it was thought that the leading to the “ConstructRequestDenied” activity

50

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

path would only be traversed a few times. It is interesting to analyse, after executing the orches-
tration several times, if this assumption remains true. Path analysis, as presented in Figure 5.6,
can help to clarify observed behaviour.

Figure 5.6: Path analysis with OrchInsider

OrchInsider’s path analysis delivers meaningful information, such as:

• Each edge’s frequency, useful to quantify observed behaviour.

• Total number of instances and activities mined.

• Begin and end activities, which help to understand if terminated instances occurred, whenever
non-predicted end activities are present (cf. Section 4.7).

• Number of possible paths between any two activities, which can be used to quantify and
perceive if specified behaviours, travelled paths between activities, were availed by the mined
process.

With the presented features, the developer, or analyst, can “zoom” in the knowledge about the
orchestration’s process. Observing Figure 5.6, it is possible to apprehend that there were no termi-
nated instances, since each start and end activities are correctly predicted activities9, and the total
number of paths, from the beginning until the end, is two, as initially expected.

5.5 Conformance Analysis

OrchInsider provides useful features concerning the analysis and discovery of deployed orchestra-
tions. First, relevant run-time information, amongst the vast amount of data stored in the event

9Activities “ReceiveRequest” and “CheckQuantity” are expected to be start and end activities, respectively, as
can be seen in Figures 4.9 and 5.4.

51

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

logs, is extracted. Secondly, extracted data is analysed, and the process model along with other
performance issues are discovered. Afterwards, the run-time behaviour of the deployed orchestra-
tion can be easily scrutinized and quantified. However, developers and analysts may like to go even
further, and compare the initially designed and modelled process with the mined and retrieved
model. Such conformance analysis is possible with OrchInsider, only requiring that the designed
orchestration’s “.odx” file is available. The initially modelled process can therefore be parsed from
the odx file and the parsed model constructed (cf. Sections 4.4.2 and 4.8). Finally, both models,
the mined and the parsed model10, can be compared and inconsistencies detected and quantified.
Figure 5.7 depicts the former rationale, which represents the full cycle of the analysis and discovery
of service orchestrations (ADSO).

Service

Orchestrations

OrchInsiderExtract

Process

Model

P
ro

c
e

s
s

M
in

in
g

Conformance

.odx

Log

Figure 5.7: Analysis and discovery of service orchestrations (ADSO), the full cycle

Using OrchInsider, conformance is analysed using two different metrics (cf. Section 4.8):

• Fitness, measuring instance conformance.

• Behaviour, measuring model conformance.

Observing Figure 5.8, where conformance check is made for the selected orchestration, one finds
that both instances are above the configure fitness threshold, fitness conformance is 100% and
behaviour conformance is around 58%. Since only two instances were chosen and mined, these
results appear to be realistic and accurate. As one may see, both instances are Ok11, whereas only
seven transitions are present, from the total of twelve transitions available in the parsed model12.
This means that some behaviour is not performed by the mined orchestration’s instances, even if
they both conform with the process model. To substantiate this understanding, it is possible to
select some options that can improve conformance analysis, such as:

• Mined model: Lists every edge mined from the deployed orchestration, and information about
whether each edge is present or not in the parsed model.

10The initially designed and modelled process is referred to as parsed model.
11Ok means 100% conformance.
12All transitions present in the dependency frequency table.

52

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

Figure 5.8: Conformance analysis with OrchInsider

• Parsed model: Similar to the previous information, except that now edges from the parsed
model are listed, together with information about whether each edge is present or not in the
mined model.

• Instances: As one can observe in Figure 5.8, this option displays every mined orchestration’s
instance, with version, start date, number of activities and fitness conformance information.

• Activities: Displays every activity retrieved from both models, and information about whether
each activity is present or not in the mined and parsed models.

OrchInsider enables the possibility to visualize the parsed model (cf. Section 4.6), and also the
conformance model. The conformance model, as presented in Figure 5.9, is used to compare mined
and parsed behaviours, which is useful to get a clear insight of model conformance. This can be
accomplished by using two different approaches:

1. Activity conformance: The purpose is to easily identify conform activities and non-conform
activities. Conform activities belong to both models and are marked green, whilst mined-
only13 activities appear in red, and parsed-only14 activities are marked blue. Mined-only
activies, although uncommon and not expected, may occur if model conformance is checked
with non-correspondent orchestration versions, or if the orchestration was changed and ver-
sioning was not performed accordingly (cf. Section 4.8). Parsed-only activities occur when
certain behaviour is not executed by the mined model, and therefore represent activities that
are not present in the event log.

13Activities that only belong to the mined model.
14Activities that only belong to the parsed model.

53

Analysis and Discovery of Service Orchestrations 5. OrchInsider: A mining application

2. Model differences: Intends to easily detect differences between the parsed model and the
mined model. Mined-only activities appear in red, whilst activities present in either the
parsed model or in both models appear in blue.

Figure 5.9: Service orchestration’s activity conformance model, using OrchInsider

Figure 5.9 displays the conformance model using the activity conformance approach. Observing
such conformance model, one can easily detect non present behaviour in the mined model, as the
activities marked blue, and present behaviour in the mined model, depicted by green activities.

Service orchestration developers and process analysts can use conformance analysis to perceive
if every orchestration instance was executed accordingly and quantify the amount of behaviour
executed by the deployed orchestration.

5.6 Conclusion

This chapter has specified some of the functionalities delivered by OrchInsider, a software applica-
tion that implements the ADSO mining methodology presented in Chapter 4, with the purpose of
discovering and analysing service orchestrations. No related work concerning specific orchestration
analysis and discovery was found, nor similar applications available nowadays, which reinforces
OrchInsider’s relevance. Some of its features must be improved, but presently it can analyse and
discover some important aspects of deployed orchestrations. In the following chapter, this mining
tool and methodology will be validated and tested with further and more complex service orches-
trations.

54

Chapter 6

Case Study: SportTicket Online

In order to validate the proposed ADSO mining methodology1, it is necessary to test the solution
with other deployed orchestrations. A simple example, the depicted orchestration from Section 2.3,
was already used to introduce Orchinsider and validate its functionalities according to the proposed
methodology. Another business scenario should also be tested, using a bigger and more complex
service orchestration. The purpose and guideline of this chapter is to properly utilize OrchInsider,
applying the service orchestrations’ mining methodology, so it is possible to answer some of the
questions relative to service orchestrations already presented in Section 3.1, and listed in Table 6.1,
and others, concerning the specific business scenarios.

Question Section/s
How is the service orchestration modelled? 6.2.2
What are the business rules? Are they coherent and executed correctly? 6.2.2; 6.2.3
How was the service orchestration built? How many versions does it have? 6.2.1
What are the most frequent paths and execution probabilities? 6.2.2; 6.2.3
What is the performance time for each activity? and the whole orchestration’s? 6.2.3
What is the performance time for external services? 6.2.3
Are there any bottlenecks? And critical paths? Is the process model efficient? 6.2.2; 6.2.3
How does the orchestration’s run-time behaviour conform with the designed model? 6.2.1
What are the external service communications? 6.2.4
What is the service network architecture? 6.2.4

Table 6.1: Analysis questions concerning service orchestrations

In the following section, a brief introduction to the business scenario will be given, with some of
its peculiarities highlighted. Afterwards, the ADSO mining methodology will be put into practice
using SportTicket Online’s deployed service orchestrations. Finally, results will be reported and
analysed.

6.1 SportTicket Online’s Orchestrations

The business scenario, SportTicket Online, was an academic project from the Enterprise Systems
Integration course at the Technical University of Lisbon (IST). This project consists of relatively

1ADSO - Analysis and Discovery of Service Orchestrations mining methodology, was introduced in Chapter 4.

55

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

complex orchestrations that integrate several services to build a ticket reseller for the world cup
football championship 2010.

The main purpose of the project is to manage ticket reselling for the world cup, supporting the
buying and also the returning processes, both implemented with service orchestrations.

6.1.1 Buying Process

The buying process, orchestration “SportTicketOnline.MainOrquestracao”, consists of several in-
terconnected steps, since the game and ticket selection, pricing rules, customer data verification,
payment, billing, and ticket emission. The process flow can be summarized as follows:

1. Game selection: Service that gives information about game schedule, namely the teams play-
ing each game, date, time and place.

2. Stadium management: Service that manages each stadium’s seats repositioning and ticket
information. It reserves and unreserves tickets according to stadium information.

3. Interpol service: Customer data is analysed before emitting the tickets. In some cases, the
process can be aborted here, if returned Interpol information so requires.

4. Pricing rules: According to the selected tickets, some business rules may be applied. Tickets
may have different categories along the stadium, there may be individual or group tickets,
single or multiple tickets, and children tickets, although children must always have one adult
companion inside the stadium.

5. Payment service: Executes and verifies payment, sending back transaction status.

6. Billing service: An invoice with game and payment information is generated and stored in a
local system.

7. Ticket emission service: Each ticket is stored in a local system, and e-mailed to the customer.

6.1.2 Returning Process

The returning process is the opposite of the buying process, from a business point of view, where
payments are returned, tickets unreserved and cancelled. A ticket can only be returned until one
hour before the start of the match, and only 90% of the amount payed is restored.

6.2 Mining SportTicket Online
In the following sections, the proposed mining methodology will be applied mainly using the buying
process orchestration, given that the returning process is a much simpler orchestration that only
reverses the buying business process. Nevertheless, the returning process will be of use when
mining SportTicket Online’s full service network architecture, since both orchestrations separately
constitute the ticked reselling management service.

56

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

6.2.1 Analysis and Discovery

Considering the buying process, and loading this orchestration into OrchInsider, one can check that
there were multiple orchestration instances executed, and three orchestration versions are present.

Table 6.2 shows version information from SportTicket Online’s buying process, where every
version’s last deployment date is displayed. Section 5.1 already presented a small part of the
version analysis using SportTicket Online’s buying process. Versions three and two were compared
in Figure 5.2, where it is possible to detect discrepancies between both versions. Versions one and
two were development versions, which means that mostly every instance was executed for testing
purposes only, whereas version three is the “final” orchestration version, where buying processes are
actually being fully performed, hence, only instances from this version will be utilized to discover
the mined process model.

Version Number Last Deployment Date
1 31-05-2009 19:36:07.643
2 04-06-2009 02:31:25.030
3 16-06-2009 14:07:59.780

Table 6.2: Version information of SportTicket Online’s buying process

Before discovering the mined process model, conformance analysis can be used to acquire previ-
ous knowledge about each deployed orchestration’s instance, and this way, helping to better define
mining filters according to what is intended, such as specific instances or versions (cf. Section 4.4).
For this reason, conformance is checked initially.

One can be interested in analysing only one type of orchestration instances, complete or ter-
minated instances, or both, depending on which type of analysis is desired. Since the goal is to
acquire the mined orchestration’s model, terminated instances and older versions will be discarded.
Of course, other options could be selected, according to the analyst’s objectives. If the purpose is
to understand when and why such instances were terminated abruptly, then terminated instances
should be selected. Mining only last version’s completed instances, one can then apply conformance
analysis and visualize the activity conformance model (cf. Section 5.5), portrayed in Figures 6.1 and
6.2, which not only illustrate the complexity of the orchestration, but also depict branches that were
not executed at run-time, therefore identifying non-present behaviour in the mined orchestration’s
process model.

57

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Figure 6.1: Process conformance analysis of SportTicket Online’s buying process (a)

58

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Figure 6.2: Process conformance analysis of SportTicket Online’s buying process (b)

OrchInsider’s conformance analysis quantifies the depicted behavioural conformance as being
79%. From the total of 239 transitions, 50 were not present in the mined process. Activities that
belong to both models are conform activities and are marked green, whilst mined-only activities,
which are activities that only belong to the mined model, appear in red, and parsed-only activities,

59

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

representing activities that exist only in the parsed model2, appear in blue. Since there are not any
mined-only activities, one can conclude that model conformance was checked with correspondent
orchestration versions, and that versioning was performed accordingly (cf. Section 4.8). Observing
the conformance model, depicted in Figures 6.1 and 6.2, it is possible to perceive which behaviour
was not performed by the mined buying process model:

1. No buying process was aborted due to “negative” Interpol information. This can be observed
inside the Interpol scope (cf. Sections 4.6 and 5.3), since no “TerminarPassaporteInvalido”
activity was executed in the mined process.

2. No tickets were unmarked due to payment failure, since scope macro activity “Desmarca-
caoLugares” was never executed.

3. No process was interrupted due to unaccompanied children. Activity “TerminaCriancas-
NaoAcompanhadas”, in the “Main” scope, was never executed.

4. Every buying process completed successfully the stadium management service, meaning that
the process was never interrupted because of sold out tickets. One can observe that the
activity “TerminaLugaresInsuficientes”, inside the “MarcacaoLugares” scope, is also never
executed.

With such previous knowledge of the mined process model and its conform behaviour, one can then
visualize and extend the mined orchestration’s design model with further useful information.

6.2.2 Design Model Visualization

After analysing which behaviour was not performed by the mined buying process, one can visualize
the orchestration’s design model and enrich such model with more information that can help to
characterize the mined orchestration’s executed behaviour. To better understand activity perfor-
mance and path frequency, the analyst can define a bottleneck threshold3, according to defined
process expectations, and visualize the mined process model with identified bottleneck activities,
path frequency and probabilistic analysis (cf. Section 5.3). Selecting average time as the perfor-
mance indicator (cf. Section 4.7), and one second as the bottleneck threshold, Figures 6.3, 6.4, and
6.5, display the mined orchestration’s model enhanced with performance analysis visualization.

2The initially designed and modelled process is referred as parsed model.
3Bottleneck threshold represents activity duration, either average, maximum or minimum, in seconds.

60

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Figure 6.3: SportTicket Online’s mined buying process enhanced with performance analysis (a)

61

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Figure 6.4: SportTicket Online’s mined buying process enhanced with performance analysis (b)

62

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Figure 6.5: SportTicket Online’s mined buying process enhanced with performance analysis (c)

63

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Observing the mined orchestration’s process model presented in Figures 6.3, 6.4 and 6.5, it is
possible to perceive that:

1. The buying process was instantiated and executed 9 times, and the maximum path frequency4

present in the mined model is 21.

2. The Interpol service was invoked 21 times. There is one activity inside the “Interpol” scope,
“RecebeMensagemDadosPassaporte”, that exceeds the configured bottleneck threshold5. This
may indicate that such path, being a highest frequency path, constitutes a critical path6.

3. The game selection service, which is invoked inside the “Jogos” scope, was used 15 times.
This means that 21 users bought tickets for 15 games.

4. The payment service, invoked inside the “Pagamentos” scope, was used 9 times. This means
that 9 people payed 21 tickets for 15 games. Also, there is one activity inside the payment
scope, “RecebePedidoPagamento”, that surpasses the bottleneck threshold.

5. The ticket emission service, which is invoked inside the billing scope, “Facturacao”, was used 21
times, as expected. There is also one activity, “RecebeRespostaInsereFactura”, that surpasses
the configure threshold in this path, which might indicate a critical path, since a high frequency
path is present with a bottleneck activity.

6. There may also be a critical path when the stadium management service is invoked, which
happens inside the “MarcacaoLugares” scope. The activity “RecebeMarcacaoLugar” exceeds
the configured threshold and has a frequency of 15, which is close to the maximum path
frequency of 21. Since a high frequency path contains a bottleneck activity, a critical path
may be considered.

7. Looking at the stadium management scope, “MarcacaoLugares”, it is also possible to under-
stand that, from the 9 buying processes executed, 6 were related to single tickets, while 3
are multiple tickets, representing the other 9 games, from the total of 15. This can also be
confirmed observing the billing scope, “Facturacao”, where the activity “ConstroiFacturaNor-
mal” is executed 6 times, and the activity “ConstroiFacturaMultiplos” is executed 3 times.
“ConstroiFacturaNormal” is the activity that creates single ticket invoices, whereas “Con-
stroiFacturaMultiplos” delivers multiple ticket invoices. Both activities exceed the configured
threshold, which might indicate critical paths. Although each edge does not constitute a high
frequency edge, the truth is that either one of them include bottleneck activities.

8. Business pricing rules are performed at the “RegrasNegocio” scope, by the activity “ChamaRe-
grasNegocio”, which exceeds the configured threshold, and has a frequency of 9, also confirming
the total number of buying processes executed.

Other business conclusions could also be drawn, according to the observer’s initial understanding
of the process. As mentioned before in Section 3.1, process mining results must work side by side
with the modelled processes’ owners, analysts and developers so as to embrace the highest process

4Every edge’s width is correlated to the edge’s frequency number and the maximum edge frequency found in the
service orchestration.

5Bottleneck activities appear in red.
6Path frequency visualization displays every edge’s frequency number.

64

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

comprehension possible. Analysts can then pinpoint and “zoom” in information, in order to relate
the acquired business-oriented knowledge with more specific performance information.

6.2.3 Performance Analysis

Analysing performance quantifies and improves the characterization of the mined orchestration’s
execution. Model visualization helps to gather performed business-oriented knowledge, and perfor-
mance analysis strengthens such knowledge, clarifying uncertainties.

Figure 6.6 presents SportTicket Online’s buying process performance information, retrieved from
OrchInsider’s performance analysis. Considering maximum execution times, one can observe that

Figure 6.6: SportTicket Online’s buying process’ performance information

the orchestration’s execution time was approximately 1 minute, and 49 seconds; Internal activities
represent 0:11.006 whereas external activities stand for 1:37.981 of the total execution time. So,
almost all of the mined orchestration’s execution time is consumed “outside” the orchestration, in
invoked external services. Since it is also possible to retrieve each activity’s performance indicators,
it is important to verify former section’s detected bottleneck activities, along with some other
interesting activities, which are displayed in Table 6.3. Activity frequency is also presented, in the
“#” row, indicating the number of times each activity was performed.

Activity Name Scope Max. Time Min. Time Avg. Time #
“RecebeMensagemDadosPassaporte” “Interpol” 00:28.344 00:01:170 00:14.757 21

“RecebePedidoPagamento” “Pagamentos” 00:01.953 00:00.700 00:01.327 9
“RecebeRespostaInsereFactura” “Facturacao” 01:00.217 00:00.500 00:30.359 21

“RecebeMarcacaoLugar” “MarcacaoLugares” 00:02.860 00:00.687 00:01.774 15
“ConstroiFacturaNormal” “Facturacao” 00:02.504 00:00.000 00:01.252 6
“ConstroiFacturaMultiplos” “Facturacao” 00:01.250 00:00.784 00:01.017 3
“ChamaRegrasNegocio” “RegrasNegocio” 00:02.450 00:00.000 00:01.225 9

“Interpol” - 00:29.983 00:04.513 00:17.248 9
“Pagamentos” - 01:08.157 00:02.300 00:35.229 9
“Facturacao” - 01:06.127 00:01.550 00:33.839 9

“MarcacaoLugares” - 00:03.250 00:00.750 00:02.000 9
“Jogos” - 00:01.550 00:00.500 00:01.025 15

Table 6.3: Activity performance indicators of SportTicket Online’s buying process

• Activity “RecebeMensagemDadosPassaporte” is a ReceiveShape type activity that receives
a response from the Interpol service. Considering the presented performance indicators, it
is possible to apprehend that, either the external Interpol service is taking, in some cases,
quite a while to respond, or there are communication issues to analyse. Discrepancies between
maximum and minimum execution times may reveal that both cases must be considered. Also,
due to the high frequency of this activity, the Interpol service could improve its efficiency.

65

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

• “RecebePedidoPagamento” and “RecebeMarcacaoLugar” are also activities that receive re-
sponses from external services, the former from the payment service and the latter from the
stadium management service. In both cases however, execution times are not overwhelmingly
high.

• Considering activity “RecebeRespostaInsereFactura”, which is a ReceiveShape type activity
that waits for an answer from the local ticket emission service, one can perceive that such
service might be taking quite a while to perform its operations, namely receive each ticket
information and store it in a local system for further analysis and management. Also, due
to high discrepancies between maximum and minimum execution times, and high frequency
values, the local ticket emission service could be analysed in order to improve its efficiency.

• Analysing scope “macro” activities’ performance indicators, such as the “Interpol” scope,
where the Interpol service is invoked, it is possible to really understand the distribution of
execution time performance inside the service orchestration. Considering again maximum
execution times, one can observe that “Pagamentos”, “Facturacao” and “Interpol” scopes
represent macro activities with the highest execution times, whereas “MarcacaoLugares”, and
“Jogos” scopes have the lowest execution times inside the service orchestration.

Inspecting each activity’s performance indicator from Table 6.3, where mostly every bottleneck
activity is an activity that receives external services responses, it is possible to understand why and
where such a big slice of the orchestration’s execution time is indeed consumed in external services,
which conforms with the presented performance information shown in Figure 6.6.

The purpose so far has been to analyse and discover the mined process model along with per-
formance quantification. Nevertheless, after understanding and characterizing correctly executed
and completed orchestration instances, analysts may be interested in terminated7 instances also,
in order to understand what went wrong and why. A terminated instance represents an orchestra-
tion’s execution that did not complete its entire flow and was terminated abruptly. Completing
its entire flow, means that the orchestration’s instance starts in one start activity, and ends in one
predicted end activity8. Path analysis can be utilized to perceive terminated instances, observing
end activities.

Mining last version’s complete and terminated instances, OrchInsider’s path analysis shows that
several end activities were found. Since terminated instances are present, a slightly exaggerated and
unexpected number of end activities will always appear. Observing non-predicted end activities,
which are displayed in Table 6.4, can help to understand where orchestration instances failed their
execution.

End Activities Scope #
“RecebeMensagemDadosPassaporte” “Interpol” 1

“RecebeMarcacaoLugar” “MarcacaoLugares” 5
“EnviaPedidoMarcacaoWebService” “MarcacaoLugares” 1

“EnviaMensagemFactura” “Facturacao” 12

Table 6.4: Non-predicted end activities retrieved from SportTicket Online’s buying process

7Service orchestration instances can be in execution, completed or terminated states.
8Last activity executed by one orchestration instance.

66

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

Sporticket Online’s buying process was terminated abruptly 19 times, 12 of which were due to
failures when calling the billing service, seeing that the activity “EnviaMensagemFactura” is re-
sponsible to invoke the billing service. Another 6 failures were due to connections with the stadium
management service, since both activities, ”EnviaPedidoMarcacaoWebService” and “RecebeMarca-
caoLugar” call the stadium management service and receive answers from such service, respectively.
One terminated buying process happened while receiving an answer from the Interpol service, which
might indicate, either a failure from such service, or a connection problem.

Performance analysis has proven useful to broaden orchestration knowledge, either understand-
ing and characterizing correctly executed orchestration instances and external services, but also
inspecting abruptly terminated orchestration instances, and identifying problems concerning ex-
ternal services. Analysts can therefore quantify and correctly evaluate orchestration execution
performance.

6.2.4 Service Network Architecture

Once the mined model is captured and characterized, it is interesting to realize SportTicket Online’s
buying process communication behaviour, understanding which external services were invoked dur-
ing execution. After loading the buying process orchestration into Orchinsider, every instance’s
port information from every version is displayed. 14 communication ports are retrieved for the
buying process orchestration. Considering once again only last version’s instances, Figure 6.7 de-
picts the buying process’ service network architecture, where every invoked service communication
is displayed9 (cf. Sections 4.9 and 5.2).

Figure 6.7: Service network architecture of SportTicket Online’s buying process

Although SportTicket Online’s returning process was not analysed, it is useful to understand
its external service communications, which are depicted in Figure 6.8.

Figure 6.8: Service network architecture of SportTicket Online’s returning process

With communication information from both service orchestrations, it is possible to realize
SportTicket Online’s full service network architecture.

9Port direction information is displayed using small non-filled dots that represent receive direction ports.

67

Analysis and Discovery of Service Orchestrations 6. Case Study: SportTicket Online

6.3 Discussion

After applying the proposed methodology, using Orchinsider, some of the analysis questions listed
in Table 6.1, along with others, concerning the specific business scenarios, could be answered,
and understood. SportTicket Online’s buying process was analysed and its deployed orchestration
discovered, enabling developers and process analysts to:

1. Comprehend executed behaviour and compare it with the initially designed model.

2. Quantify mined and designed model differences.

3. Perceive process development along time.

4. Visualize the mined buying process orchestration.

5. Identify, quantify and correctly evaluate existing problems and inefficiencies, bottlenecks and
critical paths.

6. Measure performance and understand where possible improvements can be accommodated.

7. Inspect failures and understand why and when then occurred.

8. Understand external service communications and depict the orchestration’s service network
architecture.

With such delivered insights, organization analysts and developers can achieve a higher compre-
hension of the process execution and development, and this way, correctly measure, evaluate and
reengineer business processes.

OrchInsider and the proposed ADSO mining methodology can be a valuable asset to organiza-
tions, delivering information and knowledge that can help top managers to monitor and seize control
over business processes, implemented under the form of service orchestrations, firmly understanding
how processes are executed and work in reality.

68

Chapter 7

Conclusion

Organizations need to seize control over their business processes, in order to keep up with glob-
alization and interoperability concerns, but also with new legislation and regulation acts. BPM
and SOA have emerged and enabled Enterprise Application Integration in the last years, allowing
service reutilization and cross-organizational business processes, reflecting real-world processes and
business relationships more closely. BPM extends typical workflow systems with process observa-
tion and analysis, aiming to achieve higher process awareness. Using SOA, an organization can
orchestrate several distributed services, and deliver functionalities that can be utilized by other
organizations, creating distributed business processes that span several organizations, thus chore-
ographing a distributed service architecture.

Service orchestrations define another abstraction layer in which services are built upon exist-
ing services, allowing for service reutilization and composition, business collaboration. Although
they enable service composition and therefore business collaboration, service orchestrations are
centralized processes that can also be deployed as services and communicate with other services or
orchestrations, this way becoming integration enablers and SOA-based services.

7.1 Contributions

This work has presented an overview of integration platforms and their major research areas, with
special concern about integration solutions under the form of service orchestrations. Also, it has
introduced process mining as an extension to workflow systems, with the purpose of extracting useful
information from deployed orchestrations’ execution event logs. Using process mining techniques,
an orchestration mining methodology was proposed and developed, with the purpose of enabling
organizations to analyse the run-time behaviour of service orchestrations, extract process models
and compare them with their original models in order to improve or redesign business processes.
The ADSO mining methodology was applied by a software application, OrchInsider, that was
developed to analyse and discover service orchestrations using Microsoft Biztalk integration server.
The proposed solution has delivered some relevant information and brought into the light other
aspects of service orchestration analysis, such as distributed services, or choreographies. At present
times, there is no related work concerning specific service orchestration analysis and discovery, nor
similar applications available, which reinforces the relevance of this work.

69

Analysis and Discovery of Service Orchestrations 7. Conclusion

Applying process mining techniques to deployed orchestrations using their run-time generated
event logs has delivered useful insights that can be used by organizations to seize knowledge control
over their business processes.

• Understand executed behaviours and compare discovered models with previously idealized
and designed processes.

• Visualize the process model, and perceive its development and growth along time.

• Measure service performance, internal and external, and understand possible improvements.

• Identify and correctly evaluate existing problems, failures and inefficiencies, and understand
why and when then occurred.

• Realize the orchestration’s external communications and network architecture.

Organizations are continuously pressured to monitor their business processes, either by performance
and adaptability issues, or by legislation and regulation acts. Higher governance maturity concerns
are increasing inside organizations, so, more internal control requirements, methods and skills are in
fact, crucial to an organization’s survival. Understanding how organizations work is better achieved
and realized by correctly managing the organization’s business processes, and process mining has
proven its usefulness and importance, by analysing and discovering business processes developed,
deployed and executed under the form of service orchestrations.

7.2 Future Work

Service orchestrations are centralized services, and even though other services are invoked and exe-
cuted, the proposed ADSO methodology and solution only retrieves information from the deployed
and “central hub” orchestration. Service network is centralized in the orchestration, since there
is only communication information available from such orchestration, as mentioned in Section 4.9.
The analysis and discovery of the control-flow, or process perspective, is only related to a single
deployed orchestration. This centralized approach could lead to building a new mining perspective,
an interoperability, or choreography, where every orchestration is seen as a single service node, each
orchestration’s model and performance information is retrieved, and communication information
from every node is correlated, so a distributed orchestration network, a choreography, is discovered.
Section 4.9 has somewhat introduced these challenges and revealed some of the steps and issues
that could lead to a possible solution:

• Gather every orchestration’s log in a joint event log.

• Link every orchestration’s instance with every communication message.

The first issue could be solved using some kind of a log integration platform, but even so, every
orchestration’s log must be aggregated in such platform. The second issue seems to pose a dif-
ferent challenge. One idea would be to use timestamps, but this brings another problem, time
synchronization. All nodes should be synchronized with exactly the same time, or use some kind
of a time server. Nevertheless, orchestrations’ communications delivering distributed services, or
choreographies, are unsolved issues and present themselves as investigation opportunities.

70

Bibliography

W. M. P. van der Aalst. Don’t go with the flow: web services composition standards exposed. IEEE
Intelligent Systems, 18(1):72–76, 2003.

W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic process mining.
In 26th International Conference on Applications and Theory of Petri Nets (ICATPN), pages
48–69, 2005.

W.M.P. van der Aalst and Kees Van Hee. Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge, 2002.

W.M.P. van der Aalst, A. H. M. Ter Hofstede, and M. Weske. Business process management: A
survey. In Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, pages 1–12. Springer, 2003a.

W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K. Alves de Medeiros,
M. Song, and H.M.W. Verbeek. Business process mining: An industrial application. Information
Systems, 32:713–732, 2007.

W.M.P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J. M. M.
Weijters. Workflow mining: a survey of issues and approaches. Data and Knowledge Engineering,
47(2):237–267, 2003b.

W.M.P. van der Aalst, B.F. van Dongen, C. Günther, A. Rozinat, H. M. W. Verbeek, and A. J.
M. M. Weijters. ProM: The process mining toolkit. In BPM 2009 Demonstration Track, Volume
489 of CEUR-WS.org, Ulm, Germany, September 8, 2009.

W.M.P. van der Aalst and H.M.W. Verbeek. Process mining in web services: The websphere case.
IEEE Data Engineering Bulletin, 31:45–48, 2008.

W.M.P. van der Aalst and A.J.M.M. Weijters. Process mining: A research agenda. Computers and
Industry, 53:231–244, 2004.

W.M.P. van der Aalst and A.J.M.M. Weijters. Process-Aware Information Systems: Bridging People
and Software through Process Technology, chapter Process Mining, pages 235–255. Wiley & Sons,
2005.

W.M.P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16:1128–1142,
2004.

71

Analysis and Discovery of Service Orchestrations BIBLIOGRAPHY

Stephen P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–71, January 2005.

Melike Bozkaya, Joost Gabriels, and Jan Martijn van der Werf. Process diagnostics: A method
based on process mining. International Conference on Information, Process, and Knowledge
Management (eKNOW), 0:22–27, 2009.

Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Choreog-
raphy and orchestration: a synergic approach for system design. In In Proc. of 4th International
Conference on Service Oriented Computing (ICSOC), pages 228–240. Springer, 2005.

Carine Courbis and Martlesham Heath. Weaving aspects into web service orchestrations. In Pro-
ceedings of the 3rd IEEE International Conference on Web Services (ICWS 2005), pages 69–77,
July 11-15 2005.

Gero Decker, Frank Puhlmann, and Mathias Weske. Business Process Management, volume
4102/2006, chapter Formalizing Service Interactions, pages 414–419. Springer Berlin, 2006.

Giusy Di Lorenzo. Methodologies, architecture and tools for automated service composition in SOA.
PhD thesis, Università degli Studi di Napoli "Federico II", 2008.

B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van der
Aalst. The ProM framework: A new era in process mining tool support. In 26th International
Conference on Applications and Theory of Petri Nets (ICATPN 2005), G. Ciardo and P. Daron-
deau, LNCS 3536, pages 444–454, 2005.

Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede, editors. Process-Aware Infor-
mation Systems : Bridging People and Software through Process Technology. Wiley-Interscience,
Hoboken, NJ, 2005.

Schahram Dustdar and Robert Gombotz. Discovering web service workflows using web services
interaction mining. International Journal of Business Process Integration and Management, 1:
256–266(11), 2007.

Schahram Dustdar, Robert Gombotz, and Karim Baïna. Web services interaction. Technical report,
Technical University of Vienna, 2004.

Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005.

Diogo R. Ferreira. À descoberta dos processos de negócio (invited talk). ComputerWorld Advanced
Hot Topics, Hotel Villa Rica, Lisboa (in portuguese), May 15 2008.

Diogo R. Ferreira and Miguel Mira da Silva. Using process mining for ITIL assessment: a case study
with incident management. In Proceedings of the 13th Annual UKAIS Conference. Bournemouth
University, April 10-11 2008.

Florin Fortis and Alexandra Fortis. Tailored business solutions by workflow technologies. CoRR,
abs/0904.3634, 2009.

72

Analysis and Discovery of Service Orchestrations BIBLIOGRAPHY

Walid Gaaloul, Karim Baïna, and Claude Godart. Log-based Mining Techniques Applied to Web
Service Composition Reengineering. Service Oriented Computing and Applications, 2:93–110,
July 2008.

Christian W. Günther and Wil M. P. van der Aalst. A generic import framework for process event
logs. Technical report, Business Process Management Workshops, Workshop on Business Process
Intelligence (BPI 2006), LNCS 4103, Springer, 2006.

Robert Gombotz, Karim Baïna, and Schahram Dustdar. Towards web services interaction mining
architecture for e-commerce applications analysis. In Proceedings of the Conference on E-Business
and E-Learning, 1999.

Robert Gombotz and Schahram Dustdar. On web services workflow mining. In Business Process
Management Workshops, pages 216–229. Springer, 2005.

Shuangxi Huang and Yushun Fan. Model driven and service oriented enterprise integration—the
method, framework and platform. In Sixth International Conference on Advanced Language
Processing and Web Information Technology (ALPIT 2007), 2007.

Kenneth C. Laudon and Jane P. Laudon. Management Information Systems: Managing the Digital
Firm. Pearson, eleventh edition, 2009.

Christine Legner and Kristin Wende. Towards an excellence framework for business interoperability.
In BLED, volume 29, 2006.

Frank Leymann, Dieter Roller, and Marc T. Schmidt. Web services and business process manage-
ment. IBM Systems Journal, 41(2):198–211, 2002.

A. K. A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. Genetic process mining: A
basic approach and its challenges. In Business Process Management Workshops, pages 203–215,
2005.

A. K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Technische Universiteit Eindhoven,
2006.

A. K. Alves de Medeiros, A. J. Weijters, and W. M. Aalst. Genetic process mining: an experimental
evaluation. Data Min. Knowl. Discov., 14(2):245–304, 2007.

A. K. Alves de Medeiros, A. J. M. M. Weijters, and W.M.P. van der Aalst. Using genetic algorithms
to mine process models: Representation, operators and results. Technical report, Eindhoven
University of Technology, 2004.

Francesco Moscato, Nicola Mazzocca, Valeria Vittorini, Giusy Di Lorenzo, Paola Mosca, and Mas-
simo Magaldi. Workflow pattern analysis in web services orchestration: The BPEL4WS example.
In HPCC, pages 395–400, 2005.

John Novatnack and Jana Koehler. Using patterns in the design of inter-organizational systems -
an experience report. In OTM Workshops, pages 444–455, 2004.

Mike P. Papazoglou and Willem J. Heuvel. Service oriented architectures: approaches, technologies
and research issues. The VLDB Journal, 16(3):389–415, July 2007.

73

Analysis and Discovery of Service Orchestrations BIBLIOGRAPHY

Gabriel Pedraza and Jacky Estublier. Distributed orchestration versus choreography: The focas
approach. In Qing Wang, Vahid Garousi, Raymond J. Madachy, and Dietmar Pfahl, editors,
ICSP, volume 5543 of Lecture Notes in Computer Science, pages 75–86. Springer, 2009.

Chris Peltz. Web services orchestration. a review of emerging technologies, tools and standards.
Hewlett Packard White Paper, January 2003a.

Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52, 2003b.

Maja Pusnik, Matjaz B. Juric, Marjan Hericko, Bostjan Sumak, and Ivan Rozman. Business
process orchestration and ebusiness. In Proceedings of the 16th Bled eCommerce Conference,
Bled, Slovenia, June 9-11, 2003.

Stephen Ross-Talbot. Orchestration and choreography: Standards, tools and technologies for dis-
tributed workflows. In NETTAB Workshop - Workflows management: new abilities for the bio-
logical information overflow, 2005.

A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based on monitoring
real behavior. Information Systems, 33(1):64–95, 2008.

Mehmet Sayal, Fabio Casati, Umesh Dayal, and Ming chien Shan. Integrating workflow man-
agement systems with business-to-business interaction standards. In In Proceedings of the 18th
International Conference on Data Engineering, pages 287–296, 2002.

Alexander Sterff. Analysis of service-oriented architectures from a business and an IT perspective.
Master’s thesis, Technische Universitat Munchen, 2006.

José Tribolet. Sistemas de Informação Organizacionais, chapter Organizações, Pessoas, Processos e
Conhecimento: Da Reificação do Ser Humano como Componente do Conhecimento à "Consciência
de Si" Organizacional (in portuguese), pages 433–454. Edições Sílabo, November 2005.

Bruno Wassermann, Wolfgang Emmerich, Howard Foster, and Liang Chen. Web service orchestra-
tion with BPEL. 28th International Conference on Software Engineering (ICSE’06), 0:1071–1072,
2006.

A.J.M.M. Weijters and W.M.P van der Aalst. Process mining: Discovering workflow models from
event-based data. In CAI Workshop on Knowledge Discovery and Spatial Data, pages 78–84,
2002.

A.J.M.M. Weijters and W.M.P van der Aalst. Rediscovering workflow models from event-based
data using little thumb. Integrated Computer-Aided Engineering, 10:151–162, 2003.

Lijie Wen, Jianmin Wang, Zhe Wang, and Jiaguang Sun. A novel approach for process mining
based on event types. Technical report, Eindhoven University of Technology, 2004.

Ivy Xiying Zhang. Economic consequences of the Sarbanes-Oxley act of 2002. Journal of Accounting
and Economics, 44(1-2):74–115, September 2007.

74

	Introduction
	Goals
	Related Areas
	Outline

	Integration Platforms
	Enterprise Application Integration
	Enterprise Service Bus
	Service Orchestrations
	Choreographies
	Conclusion

	Process Mining
	Domain
	Mining Techniques
	Mining Web Services
	ProM: a Process Mining Framework
	Conclusion

	Mining Service Orchestrations
	Methodology
	Log Extraction
	Log Inspection
	Log Aggregation
	MXML Log File
	Process Model

	ProM Analysis
	Model Visualization
	Performance Analysis
	Conformance analysis
	Instance Conformance
	Model Conformance

	Service Network Architecture
	Conclusion

	OrchInsider: a Service Orchestrations' Mining Application
	Versioning
	Communication Ports
	Design Model
	Performance Analysis
	Conformance Analysis
	Conclusion

	Case Study: SportTicket Online
	SportTicket Online's Orchestrations
	Buying Process
	Returning Process

	Mining SportTicket Online
	Analysis and Discovery
	Design Model Visualization
	Performance Analysis
	Service Network Architecture

	Discussion

	Conclusion
	Contributions
	Future Work

	Bibliography

